| 多时相TM影像决策树模型的水稻识别提取 |
其他题名 | Using Decision Tree Model to Extract Paddy Rice Information from Multi-temporal TM Images
|
| 朱良
; 平博
; 苏奋振
; 杜云艳
; 苏伟光
|
发表期刊 | 地球信息科学学报
|
ISSN | 1560-8999
|
| 2013-06-15
|
卷号 | 15期号:3页码:446-451 |
关键词 | 多时相影像
Tm影像
决策树
水稻
信息提取
|
产权排序 | 兰州交通大学测绘与地理信息学院;中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室;武汉大学遥感信息工程学院;中国科学院烟台海岸带研究所; |
通讯作者 | 苏奋振 E-mail:[email protected]
|
作者部门 | 海岸带信息集成与综合管理实验室
|
英文摘要 | 决策树模型的多时相TM影像的小尺度水稻信息提取在我国还鲜有研究。为此,本文利用水稻生长在潮湿土壤这一特性,选取TM影像中对植物含水量和土壤湿度反应敏感的短波红外波段(1.55~1.75μm),以及反映植物覆盖率、植物长势的红光波段(0.62~0.69μm)和近红外波段(0.76~0.96μm),计算水稻移栽期、灌浆期和成熟期3个时期的归一化植被指数(NDVI)和土壤含水量指数(LSWI),提出一种时间差异的决策树水稻提取模型,以唐山市滦南县南部区域为例开展了研究。经过野外实地验证表明:该模型能有效区分出水域、玉米和菜地等较易与水稻混淆的地物,水稻提取的生产者精度和用户精度分别为95.18%和9... |
中文摘要 | Remote sensing images have been widely used in extracting and studying paddy rice information and its spatial distribution, which is highly important in land cover analysis, grain structural adjustment and prices making. But studies using multi-temporal TM images to extract small-scale rice information were few. Based on that rice favors growing on wet land, this paper selected three bands of TM images, the short-wave infrared band (1.55-1.75um) which can reflect plant water content and soil moisture, the red band (0.62-0.69um) and the near infrared band (0.76-0.96um), both of which can reflect vegetation coverage and growing condition, to compute the NDVI and LSWI of rice paddles in the three different periods: transplanting stage, heading stage, and maturing stage. Given the two indices demonstrate different characteristics during rice's different growing stages, the paper developed a corresponding time-series-based decision tree model for rice information extraction. A case study using this model was performed in the southern Luannan County, Tangshan City. Been field validated, the experiment results showed the effectiveness of the decision model in distinguishing rice paddles from water area, corn land, farm land and other similar land features, and the producer accuracy and the user accuracy are 95.18% and 98.84%, which outperform the single-temporal results by 6.78% and 7.54% respectively. |
资助机构 | 国家自然科学基金项目(41271409)
|
收录类别 | CSCD
|
语种 | 中文
|
CSCD记录号 | CSCD:4850330
|
引用统计 |
|
文献类型 | 期刊论文
|
条目标识符 | http://ir.yic.ac.cn/handle/133337/6482
|
专题 | 中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
|
推荐引用方式 GB/T 7714 |
朱良,平博,苏奋振,等. 多时相TM影像决策树模型的水稻识别提取[J]. 地球信息科学学报,2013,15(3):446-451.
|
APA |
朱良,平博,苏奋振,杜云艳,&苏伟光.(2013).多时相TM影像决策树模型的水稻识别提取.地球信息科学学报,15(3),446-451.
|
MLA |
朱良,et al."多时相TM影像决策树模型的水稻识别提取".地球信息科学学报 15.3(2013):446-451.
|
修改评论