Interactive effects of ocean acidification, ocean warming, and diurnal temperature cycling on antioxidant responses and energy budgets in two sea urchins Strongylocentrotus intermedius and Tripneustes gratilla from different latitudes | |
Zhang, Tianyu1,2,3; Li, Xiao2; Cao, Ruiwen1,2; Zhang, Qianqian1,2; Qu, Yi1,2,3; Wang, Qing1,2,4; Dong, Zhijun1,2,4; Zhao, Jianmin1,2,4 | |
发表期刊 | SCIENCE OF THE TOTAL ENVIRONMENT |
ISSN | 0048-9697 |
2022-06-10 | |
卷号 | 824页码:11 |
关键词 | Climate change Multiple stressors Sea urchins Net energy budget Latitude difference |
DOI | 10.1016/j.scitotenv.2022.153780 |
通讯作者 | Zhang, Qianqian([email protected]) ; Zhao, Jianmin([email protected]) |
英文摘要 | To accurately predict the fitness of marine ectotherms under the climate change scenarios, interactive effects from mul-tiple environmental stressors should be considered, such as ocean acidification (OA), ocean warming (OW) and diurnal temperature cycling (DTC). In this work, we evaluated and compared the antioxidant capacity and metabolism homeo-stasis of two sea urchins, viz. the temperate species Strongylocentrotus intermedius and the tropical species Tripneustes gratilla, in response to oceanic conditions under a climate change scenario. The two species were treated separately/ jointly by acidic (pH 7.6), thermal (ambient temperature + 3 degrees C), and temperature fluctuating (5 degrees C fluctuations daily) seawater for 28 days. The activities of antioxidant enzymes (catalase and superoxide dismutase) and the cellular energy allocation in the urchins' gonads were assessed subsequently. Results showed that exposure to OA, OW, and DTC all induced antioxidant responses associated with metabolism imbalance in both S. intermedius and T. gratilla. The physiological adjustments and energy strategies towards exposure of OA, OW, and DTC are species specific, per-haps owing to the different thermal acclimation of species from two latitudes. Moreover, decrease of cellular energy allocation were detected in both species under combined OA, OW, and DTC conditions, indicating unsustainable bio-energetic states. The decrease of cellular energy allocation is weaker in T. gratilla than in S. intermedius, implying higher acclimation capacity to maintain the energy homeostasis in tropical urchins. These results suggest that climate change might affect the population replenishment of the two sea urchins species, especially for the temperate species. |
资助机构 | National Key Research and Development Program of China ; Strategic Priority Research Program of the Chinese Academy of Sciences ; Youth Innovation Promotion Association, Chinese Academy of Sciences |
收录类别 | SCI |
语种 | 英语 |
关键词[WOS] | ENVIRONMENTAL HYPERCAPNIA ; PARACENTROTUS-LIVIDUS ; THERMAL TOLERANCE ; STRESS RESPONSES ; OXIDATIVE STRESS ; ACID ; METABOLISM ; ALLOCATION ; SEAWATER ; GROWTH |
研究领域[WOS] | Environmental Sciences & Ecology |
WOS记录号 | WOS:000766799900018 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.yic.ac.cn/handle/133337/37598 |
专题 | 海岸带生物学与生物资源利用重点实验室 支撑部门_中国科学院牟平海岸带环境综合试验站 海岸带生物学与生物资源利用重点实验室_海岸带生物资源高效利用研究与发展中心 |
通讯作者 | Zhang, Qianqian; Zhao, Jianmin |
作者单位 | 1.Chinese Acad Sci, Muping Coastal Environm Res Stn, Yantai Inst Coastal Zone Res, Yantai 264117, Peoples R China 2.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Biol & Biol Resources Utilizat, Yantai 264003, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Tianyu,Li, Xiao,Cao, Ruiwen,et al. Interactive effects of ocean acidification, ocean warming, and diurnal temperature cycling on antioxidant responses and energy budgets in two sea urchins Strongylocentrotus intermedius and Tripneustes gratilla from different latitudes[J]. SCIENCE OF THE TOTAL ENVIRONMENT,2022,824:11. |
APA | Zhang, Tianyu.,Li, Xiao.,Cao, Ruiwen.,Zhang, Qianqian.,Qu, Yi.,...&Zhao, Jianmin.(2022).Interactive effects of ocean acidification, ocean warming, and diurnal temperature cycling on antioxidant responses and energy budgets in two sea urchins Strongylocentrotus intermedius and Tripneustes gratilla from different latitudes.SCIENCE OF THE TOTAL ENVIRONMENT,824,11. |
MLA | Zhang, Tianyu,et al."Interactive effects of ocean acidification, ocean warming, and diurnal temperature cycling on antioxidant responses and energy budgets in two sea urchins Strongylocentrotus intermedius and Tripneustes gratilla from different latitudes".SCIENCE OF THE TOTAL ENVIRONMENT 824(2022):11. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论