Aerial Image Segmentation of Nematode-Affected Pine Trees with U-Net Convolutional Neural Network
Shen, Jiankang1; Xu, Qinghua1; Gao, Mingyang1; Ning, Jicai2; Jiang, Xiaopeng2; Gao, Meng1
发表期刊APPLIED SCIENCES-BASEL
2024-06-01
卷号14期号:12页码:14
关键词UAV remote sensing pine wood nematode machine learning U-Net
DOI10.3390/app14125087
通讯作者Gao, Meng([email protected])
英文摘要Pine wood nematode disease, commonly referred to as pine wilt, poses a grave threat to forest health, leading to profound ecological and economic impacts. Originating from the pine wood nematode, this disease not only causes the demise of pine trees but also casts a long shadow over the entire forest ecosystem. The accurate identification of infected trees stands as a pivotal initial step in developing effective prevention and control measures for pine wilt. Nevertheless, existing identification methods face challenges in precisely determining the disease status of individual pine trees, impeding early detection and efficient intervention. In this study, we leverage the capabilities of unmanned aerial vehicle (UAV) remote sensing technology and integrate the VGG classical small convolutional kernel network with U-Net to detect diseased pine trees. This cutting-edge approach captures the spatial and characteristic intricacies of infected trees, converting them into high-dimensional features through multiple convolutions within the VGG network. This method significantly reduces the parameter count while enhancing the sensing range. The results obtained from our validation set are remarkably promising, achieving a Mean Intersection over Union (MIoU) of 81.62%, a Mean Pixel Accuracy (MPA) of 85.13%, an Accuracy of 99.13%, and an F1 Score of 88.50%. These figures surpass those obtained using other methods such as ResNet50 and DeepLab v3+. The methodology presented in this research facilitates rapid and accurate monitoring of pine trees infected with nematodes, offering invaluable technical assistance in the prevention and management of pine wilt disease.
资助机构Key Program of Shandong Natural Science Foundation
收录类别SCI
语种英语
关键词[WOS]WILT DISEASE
研究领域[WOS]Chemistry ; Engineering ; Materials Science ; Physics
WOS记录号WOS:001254655000001
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cn/handle/133337/35903
专题中国科学院海岸带环境过程与生态修复重点实验室
中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
通讯作者Gao, Meng
作者单位1.Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
2.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China
推荐引用方式
GB/T 7714
Shen, Jiankang,Xu, Qinghua,Gao, Mingyang,et al. Aerial Image Segmentation of Nematode-Affected Pine Trees with U-Net Convolutional Neural Network[J]. APPLIED SCIENCES-BASEL,2024,14(12):14.
APA Shen, Jiankang,Xu, Qinghua,Gao, Mingyang,Ning, Jicai,Jiang, Xiaopeng,&Gao, Meng.(2024).Aerial Image Segmentation of Nematode-Affected Pine Trees with U-Net Convolutional Neural Network.APPLIED SCIENCES-BASEL,14(12),14.
MLA Shen, Jiankang,et al."Aerial Image Segmentation of Nematode-Affected Pine Trees with U-Net Convolutional Neural Network".APPLIED SCIENCES-BASEL 14.12(2024):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shen, Jiankang]的文章
[Xu, Qinghua]的文章
[Gao, Mingyang]的文章
百度学术
百度学术中相似的文章
[Shen, Jiankang]的文章
[Xu, Qinghua]的文章
[Gao, Mingyang]的文章
必应学术
必应学术中相似的文章
[Shen, Jiankang]的文章
[Xu, Qinghua]的文章
[Gao, Mingyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。