Multiple serial correlations in global air temperature anomaly time series
Gao, Meng1; Fang, Xiaoyu1; Ge, Ruijun1; Fan, You-ping1; Wang, Yueqi2
发表期刊PLOS ONE
ISSN1932-6203
2024-07-09
卷号19期号:7页码:20
DOI10.1371/journal.pone.0306694
通讯作者Gao, Meng([email protected])
英文摘要Serial correlations within temperature time series serve as indicators of the temporal consistency of climate events. This study delves into the serial correlations embedded in global surface air temperature (SAT) data. Initially, we preprocess the SAT time series to eradicate seasonal patterns and linear trends, resulting in the SAT anomaly time series, which encapsulates the inherent variability of Earth's climate system. Employing diverse statistical techniques, we identify three distinct types of serial correlations: short-term, long-term, and nonlinear. To identify short-term correlations, we utilize the first-order autoregressive model, AR(1), revealing a global pattern that can be partially attributed to atmospheric Rossby waves in extratropical regions and the Eastern Pacific warm pool. For long-term correlations, we adopt the standard detrended fluctuation analysis, finding that the global pattern aligns with long-term climate variability, such as the El Ni & ntilde;o-Southern Oscillation (ENSO) over the Eastern Pacific. Furthermore, we apply the horizontal visibility graph (HVG) algorithm to transform the SAT anomaly time series into complex networks. The topological parameters of these networks aptly capture the long-term correlations present in the data. Additionally, we introduce a novel topological parameter, Delta sigma, to detect nonlinear correlations. The statistical significance of this parameter is rigorously tested using the Monte Carlo method, simulating fractional Brownian motion and fractional Gaussian noise processes with a predefined DFA exponent to estimate confidence intervals. In conclusion, serial correlations are universal in global SAT time series and the presence of these serial correlations should be considered carefully in climate sciences.
资助机构Key Program of Shandong Natural Science Foundation ; National Natural Science Foundation of China
收录类别SCI
语种英语
关键词[WOS]LONG-RANGE DEPENDENCE ; TERM-MEMORY ; SEASONALITY
研究领域[WOS]Science & Technology - Other Topics
WOS记录号WOS:001270730100001
引用统计
文献类型期刊论文
条目标识符http://ir.yic.ac.cn/handle/133337/35667
专题中国科学院海岸带环境过程与生态修复重点实验室
中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
通讯作者Gao, Meng
作者单位1.Yantai Univ, Sch Math & Informat Sci, Yantai, Peoples R China
2.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai, Peoples R China
推荐引用方式
GB/T 7714
Gao, Meng,Fang, Xiaoyu,Ge, Ruijun,et al. Multiple serial correlations in global air temperature anomaly time series[J]. PLOS ONE,2024,19(7):20.
APA Gao, Meng,Fang, Xiaoyu,Ge, Ruijun,Fan, You-ping,&Wang, Yueqi.(2024).Multiple serial correlations in global air temperature anomaly time series.PLOS ONE,19(7),20.
MLA Gao, Meng,et al."Multiple serial correlations in global air temperature anomaly time series".PLOS ONE 19.7(2024):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Meng]的文章
[Fang, Xiaoyu]的文章
[Ge, Ruijun]的文章
百度学术
百度学术中相似的文章
[Gao, Meng]的文章
[Fang, Xiaoyu]的文章
[Ge, Ruijun]的文章
必应学术
必应学术中相似的文章
[Gao, Meng]的文章
[Fang, Xiaoyu]的文章
[Ge, Ruijun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。