生物膜形成和牡蛎养殖对微塑料沉降行为的影响研究
李佳森
学位类型硕士
导师王清
2024-08-16
培养单位中国科学院烟台海岸带研究所
学位授予单位中国科学院大学
学位授予地点中国科学院烟台海岸带研究所
学位名称理学硕士
学位专业海洋生物学
关键词微塑料,生物膜,生物沉降,贝类养殖,激光红外成像系统
摘要由于塑料制品的大量生产和使用,又因目前缺乏高效处理回收方法,导致 全球生境中都发现了塑料垃圾的存在,其中一部分以微塑料(粒径 1μm-5mm) 形式在全球生态系统中广泛分布。据估计约有 80 %塑料碎片从陆地进入海洋, 在这一过程中微塑料会受到物理、化学和生物等因素影响,导致微塑料发生各 种变化,进而影响微塑料在近海中运输、归趋和最终命运。漂浮微塑料表面往 往形成一层生物膜,改变微塑料表面性质和理化状态,生物膜形成也受到各种 环境因素如温度、营养盐和溶解氧等的影响,这些因素主导了微塑料生物膜的 生物组成。此外,近海筏式养殖的牡蛎具有良好的滤水能力,牡蛎在滤水过程 中不可避免地接触到水体中的微塑料,能够将微塑料融入粪便或者假粪便中, 从而影响微塑料在近岸环境介质中的垂直分布。因此,本研究选取近海典型漂 浮聚乙烯(Polyethylene,PE)微塑料作为研究对象,在海水浴场、海水池塘和 筏式养殖区三种不同类型的研究区域进行孵育,解析微塑料表面附着生物膜的 形成过程,分析微塑料表面生物膜引起的密度和沉降变化。进一步收集测定不 同孵育站位温度、营养盐、溶解氧和pH等环境因子,阐明影响黄渤海近岸水体 微塑料表面生物膜形成特征的主要因素。此外,设计并投放生物沉积物捕集器 以收集长牡蛎产生的生物沉积物,采用激光红外成像系统(LDIR)分析微塑料, 进而解析长牡蛎垂直输运微塑料的能力,并利用广义线性混合模型探究影响沿 岸沉积物中微塑料丰度的主要因素,如水深、离岸距离和到牡蛎养殖区距离等。 采用室内模拟实验,探究了牡蛎对不同浓度、粒径和聚合物类型微塑料的生物 沉降作用。研究结果揭示了海洋软体动物在近海微塑料输运过程中的重要作用, 并可为近海微塑料污染管控提供数据支撑。本研究主要结论如下:(1)探讨了老化和非老化微塑料生物膜形成对其沉降行为的影响。使用紫外老化微塑料样品15天后,扫描电镜观察微塑料表面发现出现细小裂纹和微粒, 增加了粗糙程度,与原始微塑料相比其表面氧元素含量显著增加,同时出现羰 基附加振动峰,说明老化过程能够引起微塑料表面含氧基团产生,发生氧化效 应。此外,野外条件下自然老化的微塑料纤维出现碳氧键附加峰,不同老化方 式可能导致出现的微塑料老化特征不一致。微塑料老化状态对微生物附着具有 一定影响。在光学显微镜下观察到的图像显示,未经老化处理的微塑料表面生 物附着较少,且分散程度较高。相比之下,经过老化处理的微塑料表面具有更 多的裂隙和划痕,生物膜更集中,并且更倾向于形成聚集簇。塑料上生物膜含 量会随着暴露时间的增加而增加。在微塑料孵育后期生物膜含量呈现出海水池 塘>养殖区>海水浴场的趋势,不同生境间有显著差异。老化微塑料上生物膜含量大于非老化微塑料。微塑料生物膜生物量结合环境因子分析结果表明,硅酸盐和溶解氧为影响生物膜含量的主要环境因素。硅酸盐浓度区分了不同站点 生物膜发育中期和发育后期阶段的区别,而溶解氧主要区分了不同生境间生物 膜含量的差异。生物膜含量最高的老化微塑料在孵育结束时(12w),其密度也 仅达到0.97 g cm-3,未能导致微塑料发生沉降。这说明该粒径大小的微塑料表面 的生物膜对微塑料密度改变较小,其沉降行为的发生需要更长孵育时间。(2)解析了养殖长牡蛎(Crassostrea gigas)在近海微塑料垂直输运过程中的重要作用。以长牡蛎为研究对象,利用自制沉积物捕集器原位收集了长牡 蛎产生的生物沉积物。结果发现长牡蛎具有很强的微塑料沉积能力,单个成体 长牡蛎日沉降量可以达到15.88 items ind-1 d-1,而早期研究低估了长牡蛎垂直运 输微塑料的能力。生物沉积组中的微塑料丰度显著高于对照组(填充空牡蛎壳), 是其 3.54 倍。与自然沉积相比,长牡蛎显著增加了正浮力微塑料和小颗粒微塑 料(< 50 µm)的沉积,但未发现长牡蛎对不同类型微塑料有偏好或筛选作用。 生物沉积组中塑料聚合物类型更为丰富,海水和对照组中聚合物类型少于生物 沉积组。粒径小于50 μm的MPs在所有鉴定的MPs样品中占主导地位,分别占 海水组、对照组和生物沉积组的85.17%、81.95%和79.12%。近海养殖生物的生 物沉积作用可能会改变微塑料在近海环境中的分布格局,烟台海岸沉积物中微 塑料平均丰度为 100.04 ± 56.78 items/g d.w.,其中微塑料丰度最低为 36.25 items/g d.w.,最高为 271.25 items/g d.w.;养殖区平均微塑料丰度(113.59 items/g d.w.)高于非养殖区(78.35 items/g d.w.)。养殖长牡蛎对微塑料的沉积作用会形 成污染热点区域,最佳广义线性混合模型表明贝类筏式养殖活动对沉积物中微 塑料时空分布特征有重要影响。此外,本研究还发现近海水柱中微塑料丰度被 大大低估,这是由于传统微塑料鉴定技术如傅里叶红外光谱(FT-IR)和拉曼光 谱(Raman spectra)忽视了大量难以被肉眼观察到的微塑料,而激光红外成像 系统(LDIR)更准确地估计了水体中的微塑料丰度。 (3)室内实验探究了长牡蛎对不同浓度、粒径和聚合物类型微塑料的生物 沉降作用。长牡蛎在高浓度(1000 items/L)暴露下对微塑料的沉降量与其余两 种暴露浓度下(200 items/L、500 items/L)的沉降量相比存在显著差异,其对微 塑料的沉降量随着暴露浓度的提升而提高。长牡蛎暴露在不同粒径微塑料水体 后,对小粒径(50 μm)微塑料日沉降量最大,可达39.58 ± 3.61 items ind-1 d-1。 长牡蛎对小粒径和中等粒径(100 μm)微塑料的沉降作用显著高于大粒径(180 μm)微塑料,随着微塑料粒径增加,微塑料沉降量也随之减少。长牡蛎对不同 聚合物类型微塑料的日沉降量在 14.58-21.88 个之间,长牡蛎对不同聚合物类型 的微塑料沉降量无显著差异,表明长牡蛎对不同聚合物类型微塑料无选择作用。
其他摘要Due to the massive production and use of plastic products, coupled with the current lack of efficient treatment and recycling methods, plastic waste has been detected in environments across the globe. A portion of this waste is in the form of microplastics (particle sizes ranging from 1 μm to 5 mm), which are widely distributed throughout global ecosystems. It is estimated that approximately 80% of plastic fragments originate from land and enter the oceans, where microplastics are subjected to various physical, chemical, and biological influences. These factors cause microplastics to undergo diverse transformations, which in turn affect their transport, fate, and ultimate destiny in coastal areas. Floating microplastics often develop a biofilm on their surface, altering their surface properties and physicochemical state. The formation of biofilms is influenced by various environmental factors such as temperature, nutrients, and dissolved oxygen, which predominantly determine the biological composition of the biofilm on microplastics. In addition, oysters in coastal raft aquaculture systems, known for their effective water filtration capabilities, inevitably come into contact with microplastics in the water during filtration. Oysters can incorporate microplastics into their feces or pseudo-feces, thereby influencing the vertical distribution of microplastics in nearshore environments. Therefore, this study selected typical floating polyethylene (PE) microplastics as the research object and conducted incubation experiments in three different types of study areas: a seawater bathing beach, a seawater pond, and a raft aquaculture area. The study aimed to elucidate the formation process of biofilms on the surface of microplastics, analyze changes in density and sedimentation induced by biofilm formation on microplastics, and further investigate the environmental factors such as temperature, nutrients, dissolved oxygen, and pH that influence biofilm formation on microplastics in the coastal waters of the Yellow Sea and Bohai Sea. Moreover, bio-deposition traps were designed and deployed to collect biodeposits produced by cultured oysters, and a Laser Direct Infrared Imaging (LDIR) system was employed to analyze microplastics. This allowed for the examination of the vertical transport capacity of microplastics by oysters. The study also utilized a Generalized Linear Mixed Model (GLMM) to explore the main factors influencing microplastic abundance in coastal sediments, such as water depth, distance from the shore, and proximity to oyster farming areas. Additionally, indoor simulation experiments were conducted to investigate the biodeposition effects of oysters on microplastics of different concentrations, particle sizes, and polymer types. The research findings reveal the significant role of marine mollusks in the transport of microplastics in coastal areas, providing essential data to support the management and control of microplastic pollution in coastal environments. The main conclusions of this study are as follows: (1) This study investigated the impact of biofilm formation on the sedimentation behavior of aged and non-aged microplastics. After subjecting microplastic samples to UV aging for 15 days, scanning electron microscopy revealed the presence of fine cracks and particles on the microplastic surfaces, which increased their roughness. Compared to the original microplastics, the aged samples showed a significant increase in surface oxygen content, along with the appearance of additional carbonyl stretching peaks, indicating that the aging process induces the formation of oxygen-containing functional groups and causes oxidation effects on the microplastics. Moreover, naturally aged microplastic fibers in field conditions exhibited additional C-O bond peaks, suggesting that different aging methods may lead to varying aging characteristics in microplastics. The aging state of microplastics has a certain influence on microbial attachment. Optical microscopy images showed that the surface of non-aged microplastics had less biofouling attachment and a more dispersed distribution. In contrast, aged microplastics displayed more cracks and scratches on their surfaces, with biofouling more concentrated and tending to form clusters. The amount of biofilm on the plastic surfaces increased with exposure time. In the later stages of microplastic incubation, the biofilm content followed the trend of seawater ponds > aquaculture areas > bathing beaches, with significant differences observed among different environments. Aged microplastics exhibited greater biofilm content than non-aged microplastics. An analysis combining biofilm biomass on microplastics with environmental factors revealed that silicate and dissolved oxygen were the main environmental factors influencing biofilm content. Silicate concentration distinguished the different stages of biofilm development between mid and late stages at different sites, while dissolved oxygen primarily differentiated biofilm content among different habitats. Even at the end of incubation (12 weeks), the density of the aged microplastics with the highest biofilm content only reached 0.97 g cm⁻³, which was insufficient to cause sedimentation. This indicates that biofilm formation on microplastics of this particle size has a relatively minor effect on changing their density, and a longer incubation period is required for sedimentation to occur. (2) This study elucidated the significant role of cultured Pacific oysters (Crassostrea gigas) in the vertical transport of microplastics in nearshore environments. Using custom-designed sediment traps, we collected biodeposits produced by the oysters in situ. The results demonstrated that oysters possess a strong capacity for microplastic deposition, with individual oysters capable of depositing up to 15.88 items per individual per day (items ind⁻¹ d⁻¹). Previous studies have underestimated the oysters' ability to vertically transport microplastics. The abundance of microplastics in the biodeposit group was significantly higher than in the control group (which used empty oyster shells as a filler), by a factor of 3.54. Compared to natural sedimentation, oysters significantly increased the deposition of positively buoyant microplastics and smaller particles (<50 µm) but showed no preference or selection for different types of microplastics. The variety of plastic polymers in the biodeposit group was more diverse, with fewer polymer types found in the seawater and control groups than in the biodeposit group. Microplastics smaller than 50 μm dominated all identified microplastic samples, accounting for 85.17%, 81.95%, and 79.12% in the seawater, control, and biodeposit groups, respectively. The biodeposition activity of aquaculture organisms like oysters may further alter the vertical distribution pattern of microplastics in nearshore environments. In Yantai coastal sediments, the average microplastic abundance was 100.04 ± 56.78 items/g dry weight (d.w.), with the lowest recorded abundance being 36.25 items/g d.w. and the highest 271.25 items/g d.w. The average microplastic abundance in aquaculture areas (113.59 items/g d.w.) was higher than in non-aquaculture areas (78.35 items/g d.w.). The oysters' deposition of microplastics created a sedimentation hotspot, and the best-fit generalized linear mixed model indicated that shellfish aquaculture activities have a significant impact on the spatial and temporal distribution characteristics of microplastics in sediments. The oysters' efficient deposition of microplastics may substantially influence the spatiotemporal distribution patterns of microplastics in nearshore environments. Additionally, we measured the abundance of microplastics in the water column and found that the abundance was significantly underestimated. Traditional microplastic identification techniques, such as Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy, overlooked a substantial amount of microplastics that are difficult to observe with the naked eye, while the laser direct infrared imaging system (LDIR) provided a more accurate estimate of microplastic abundance in the water. (3) In laboratory experiments, we investigated the biodeposition of microplastics by Pacific oysters under varying concentrations, particle sizes, and polymer types. The results showed that the oysters' microplastic deposition at high concentrations (1000 items/L) was significantly greater than at the other two concentrations (200 items/L and 500 items/L). The amount of microplastic deposition by oysters increased with the exposure concentration, indicating that oysters do not reject microplastic ingestion even at higher concentrations. When exposed to different particle sizes, the oysters exhibited the highest daily deposition rate for smaller microplastics (50 μm), reaching up to 39.58 ± 3.61 items per individual per day (items ind⁻¹ d⁻¹). The deposition of smaller and medium-sized microplastics (100 μm) was significantly higher than that of larger microplastics (180 μm). As the particle size increased, the amount of microplastic deposition decreased correspondingly. The oysters' daily deposition of different polymer types ranged from 14.58 to 21.88 items, with no significant differences in deposition rates across various polymer types, suggesting that the oysters did not show selective deposition based on the polymer type of the microplastics.
目录第1章 绪论 1 1.1 微塑料污染概况 1 1.1.1 微塑料定义 1 1.1.2 海洋微塑料来源与分布 1 1.2 海洋微塑料污染现状 2 1.3 微塑料沉降 3 1.3.1 微塑料自身理化性质对垂直沉降的影响 3 1.3.1.1 微塑料密度 3 1.3.1.2 微塑料形状 4 1.3.1.3 微塑料粒径 5 1.3.2 海洋生物对微塑料沉降行为的影响 5 1.3.2.1 生物膜形成 6 1.3.2.2 海洋植物和藻类 7 1.3.2.3 海洋动物 8 1.3.2.4 海洋雪 9 1.4 研究意义、内容及技术路线 10 1.4.1 研究意义及内容 10 1.4.2 技术路线 10 第2章 微塑料表面生物膜形成及其对沉降行为的影响 12 2.1 材料和方法 12 2.1.1 实验试剂、溶液与仪器 12 2.1.1.1 实验试剂 12 2.1.1.2实验溶液 13 2.1.1.3实验仪器 13 2.1.2 实验材料准备、装置及孵育地选择 14 2.1.2.1 微塑料样品制备 14 2.1.2.2 孵育站位选择 14 2.1.3 微塑料生物膜特征分析 15 2.1.3.1 生物膜形貌观察 15 2.1.3.2 生物膜含量测定 15 2.1.4 微塑料密度测定 16 2.1.5 数据处理 16 2.2 研究结果与讨论 16 2.2.1 微塑料老化特征 16 2.2.2 生物膜形态变化 18 2.2.3 生物膜含量变化以及环境因素对生物膜的影响 21 2.2.4微塑料沉降行为 24 2.3 本章小结 25 第3章 近海牡蛎养殖对微塑料的生物沉降作用 26 3.1 引言 26 3.2 材料和方法 27 3.2.1 实验试剂与仪器 27 3.2.1.1 实验试剂 27 3.2.1.2 实验仪器 27 3.2.2 牡蛎样本的收集和生物沉积物捕集器制备 27 3.2.3 生物沉积物捕集器投放和沉积物的采集 29 3.2.4 微塑料分离浮选 30 3.2.5 微塑料定量识别 31 3.2.6 沉积物粒度测定 32 3.2.7 微塑料形貌观察 33 3.2.8 利用广义线性混合模型模拟沉积物MPs的潜在来源 33 3.2.9 质量保证 35 3.2.10数据处理和分析 35 3.3 结果 36 3.3.1 水体和沉积物采集器中的MPs 36 3.3.2 水体和沉积物中MPs的粒径分布 38 3.3.3 水体和沉积物中MPs的形状 39 3.3.4 烟台近海沉积物MPs污染特征 40 3.3.5 基于广义线性混合模型推断沉积物中MPs的来源 41 3.3.5 牡蛎对水柱中MPs的生物沉积作用 43 3.4 讨论 45 3.5 本章小结 48 第4章 室内模拟牡蛎对不同类型微塑料的生物沉降作用 49 4.1 引言 49 4.2 材料和方法 49 4.2.1 实验试剂与仪器 49 4.2.1.1 实验试剂 49 4.2.1.2 实验仪器 50 4.2.2 牡蛎和微塑料的准备 50 4.2.3 暴露实验 50 4.2.4 微塑料分离浮选 51 4.2.5 微塑料沉降量的测定 52 4.2.6 质量控制 52 4.2.7 数据处理和分析 52 4.3 结果与讨论 53 4.3.1 微塑料浓度 53 4.3.2 微塑料粒径 54 4.3.3 微塑料类型 55 4.4 本章小结 56 第5章 结论与展望 58 5.1 本研究主要结论 58 5.2 本研究主要创新点 59 5.3 本研究主要不足 60 参考文献 61 致 谢 75 作者简历及攻读学位期间发表的学术论文与其他相关学术成果 77
页数77
语种中文
文献类型学位论文
条目标识符http://ir.yic.ac.cn/handle/133337/35595
专题海岸带生物学与生物资源利用重点实验室_海岸带生物资源高效利用研究与发展中心
推荐引用方式
GB/T 7714
李佳森. 生物膜形成和牡蛎养殖对微塑料沉降行为的影响研究[D]. 中国科学院烟台海岸带研究所. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
硕士学位论文.pdf(6876KB)学位论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李佳森]的文章
百度学术
百度学术中相似的文章
[李佳森]的文章
必应学术
必应学术中相似的文章
[李佳森]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。