Institutional Repository of Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (KLCEP)
An Improved YOLOV5 Based on Triplet Attention and Prediction Head Optimization for Marine Organism Detection on Underwater Mobile Platforms | |
Li, Yan1,2,3; Bai, Xinying1,2,3,4; Xia, Chunlei5 | |
发表期刊 | JOURNAL OF MARINE SCIENCE AND ENGINEERING |
2022-09-01 | |
卷号 | 10期号:9页码:13 |
关键词 | marine organism target identification deep learning attention mechanism model optimization |
DOI | 10.3390/jmse10091230 |
通讯作者 | Li, Yan([email protected]) ; Xia, Chunlei([email protected]) |
英文摘要 | Machine vision-based automatic detection of marine organisms is a fundamental task for the effective analysis of production and habitat changes in marine ranches. However, challenges of underwater imaging, such as blurring, image degradation, scale variation of marine organisms, and background complexity, have limited the performance of image recognition. To overcome these issues, underwater object detection is implemented by an improved YOLOV5 with an attention mechanism and multiple-scale detection strategies for detecting four types of common marine organisms in the natural scene. An image enhancement module is employed to improve the image quality and extend the observation range. Subsequently, a triplet attention mechanism is introduced to the YOLOV5 model to improve the feature extraction ability. Moreover, the structure of the prediction head of YOLOV5 is optimized to capture small-sized objects. Ablation studies are conducted to analyze and validate the effective performance of each module. Moreover, performance evaluation results demonstrate that our proposed marine organism detection model is superior to the state-of-the-art models in both accuracy and speed. Furthermore, the proposed model is deployed on an embedded device and its processing time is less than 1 s. These results show that the proposed model has the potential for real-time observation by mobile platforms or undersea equipment. |
资助机构 | National Natural Science Foundation of China ; Liaoning Provincial Natural Science Foundation of China ; State Key Laboratory of Robotics at Shenyang Institute of Automation ; Liaoning Revitalization Talents Program |
收录类别 | SCI |
语种 | 英语 |
关键词[WOS] | NETWORK |
研究领域[WOS] | Engineering ; Oceanography |
WOS记录号 | WOS:000857628800001 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.yic.ac.cn/handle/133337/31698 |
专题 | 中国科学院海岸带环境过程与生态修复重点实验室 中国科学院海岸带环境过程与生态修复重点实验室_海岸带环境工程技术研究与发展中心 |
通讯作者 | Li, Yan; Xia, Chunlei |
作者单位 | 1.Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China 2.Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China 3.Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R China 4.Liaoning Univ, Coll Informat, Shenyang 110136, Peoples R China 5.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Yan,Bai, Xinying,Xia, Chunlei. An Improved YOLOV5 Based on Triplet Attention and Prediction Head Optimization for Marine Organism Detection on Underwater Mobile Platforms[J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING,2022,10(9):13. |
APA | Li, Yan,Bai, Xinying,&Xia, Chunlei.(2022).An Improved YOLOV5 Based on Triplet Attention and Prediction Head Optimization for Marine Organism Detection on Underwater Mobile Platforms.JOURNAL OF MARINE SCIENCE AND ENGINEERING,10(9),13. |
MLA | Li, Yan,et al."An Improved YOLOV5 Based on Triplet Attention and Prediction Head Optimization for Marine Organism Detection on Underwater Mobile Platforms".JOURNAL OF MARINE SCIENCE AND ENGINEERING 10.9(2022):13. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论