Particle smoothing via Markov chain Monte Carlo in general state space models
Gao, Meng1; Zhang, Hui2
ISSN1752-5055
2018
卷号9期号:2页码:181-188
关键词Dynamical systems Markov processes Numerical methods State estimation State space methods
DOI10.1504/IJCSM.2018.091733
产权排序(1) Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai; 264003, China; (2) School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an; 710072, China
作者部门海岸带信息集成与综合管理实验室
英文摘要Sequential Monte Carlo (SMC) methods (also known as particle filter) provide a way to solve the state estimation problem in nonlinear non-Gaussian state space models (SSM) through numerical approximation. Particle smoothing is one retrospective state estimation method based on particle filtering. In this paper, we propose a new particle smoother. The basic idea is easy and leads to a forward-backward procedure, where the Metropolis-Hastings algorithm is used to resample the filtering particles. The goodness of the new scheme is assessed using a nonlinear SSM. It is concluded that this new particle smoother is suitable for state estimation in complicated dynamical systems. Copyright © 2018 Inderscience Enterprises Ltd.
文章类型article
收录类别EI
语种英语
研究领域[WOS]Control Systems
EI主题词Dynamical systems ; Markov processes ; Numerical methods ; State estimation ; State space methods
EI入藏号20182205239345
引用统计
文献类型期刊论文
条目标识符http://ir.yic.ac.cn/handle/133337/25215
专题中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
中国科学院海岸带环境过程与生态修复重点实验室
作者单位1.Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai; 264003, China;
2.School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an; 710072, China
推荐引用方式
GB/T 7714
Gao, Meng,Zhang, Hui. Particle smoothing via Markov chain Monte Carlo in general state space models[J],2018,9(2):181-188.
APA Gao, Meng,&Zhang, Hui.(2018).Particle smoothing via Markov chain Monte Carlo in general state space models.,9(2),181-188.
MLA Gao, Meng,et al."Particle smoothing via Markov chain Monte Carlo in general state space models".9.2(2018):181-188.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Particle smoothing v(264KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Meng]的文章
[Zhang, Hui]的文章
百度学术
百度学术中相似的文章
[Gao, Meng]的文章
[Zhang, Hui]的文章
必应学术
必应学术中相似的文章
[Gao, Meng]的文章
[Zhang, Hui]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Particle smoothing via Markov chain Monte Carlo in general state space models.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。