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Abstract: Sequential Monte Carlo (SMC) methods (also known as particle
filter) provide a way to solve the state estimation problem in nonlinear
non-Gaussian state space models (SSM) through numerical approximation.
Particle smoothing is one retrospective state estimation method based on
particle filtering. In this paper, we propose a new particle smoother. The
basic idea is easy and leads to a forward-backward procedure, where the
Metropolis-Hastings algorithm is used to resample the filtering particles.
The goodness of the new scheme is assessed using a nonlinear SSM. It is
concluded that this new particle smoother is suitable for state estimation in
complicated dynamical systems.
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1 Introduction

Stochastic state space models (SSMs) are widely used for modelling and predicting
dynamic processes across natural sciences, social sciences and engineering (Wikle and
Berliner, 2007). SSMs provide a standard framework for combining dynamic processes,
system noises and measurement errors (Arulampalam et al., 2002; Kantas et al., 2009;
Gao and Zhang, 2012). A generic SSM of discrete time is usually formulated as:

xt+1 = ft(xt, vt) (1)

yt = ht(xt, wt) (2)

where xt ∈ Rnx denotes the state vector whose transition from t to t+ 1 is assumed
to follow the Markovian rule. To be more specific, vt and wt are independent random
vectors representing the system noise and measurement error, respectively. In addition,
ft : R

nx ×Rnv → Rnx is the system equation, yt ∈ Rny is the measurement vector
and ht : R

nx ×Rnw → Rny is the measurement equation. Typically, equations (1)–(2)
are derived from physical, chemical, or biological principles, often turning out nonlinear
(Doucet et al., 2001; Wikle and Berliner, 2007; Tulsyan et al., 2013).

Formally, a SSM is a partially observed Markov process and the estimation
of unknown model states from incomplete or inaccurate observations represents the
key problem (Kantas et al., 2009). Given the observations, state estimation can be
categorised into filtering and smoothing depending if inference is performed in an online
or offline manner (Doucet and Johansen, 2009; Douc et al., 2011; Neddermeyer, 2011).
Currently, the theory and practice of filtering is quite well established while smoothing
aspects, in particular in nonlinear models, have been less investigated (Doucet and
Johansen, 2009). Smoothing comprises two related tasks:

1 the joint smoothing problem to infer the joint distribution of the entire state
sequence, p(x1:T |y1:T ), given all the observations (where T is the number of time
steps)

2 the fixed-interval smoothing problem to infer the marginal distribution of each
state, p(xt|y1:T ), given all the observations (Bunch and Godsill, 2012).

In recent years, high performance computing makes it now possible the use of Monte
Carlo methods to solve complex state estimation problem in nonlinear or non-Gaussian
SSMs, where the tractable closed form solutions are rare. In particle filtering, Monte
Carlo techniques are exploited to generate samples (or ‘particles’) to approximate the
filtering distribution p(xt|y1:t) (Gordon et al., 1993). Similar ideas also apply to the
problem of smoothing (Kitagawa, 1996; Doucet et al., 2000; Tanizaki, 2001; Godsill
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et al., 2004; Briers et al., 2010). It is also possible to develop a Markov Chain
Monte Carlo (MCMC) algorithm to sample from the joint density p(x1:T |y1:T ) and,
hence, from the marginal smoothing densities p(xt|y1:T ). Pillonetto and Bell (2008)
proposed a particle smoothing algorithm via Markov chain Monte Carlo, in which
the proposal density draws samples from suitable approximations of the posterior
distribution. In this paper, we propose a new particle smoother that also exploits MCMC
and is carried out in a forward filtering-backward smoothing procedure. An advantage
of our approach is that it is not necessary to compute the weights or to construct
complicated proposal distributions. The basic idea is to implement backward smoothing
by employing Metropolis-Hastings procedure to resample the filtering particles, so that
convergence to the posterior distribution is guaranteed.

2 Particle filtering and smoothing

Let x1:T = {x1, x2, · · · , xT } and y1:T = {y1, y2, · · · , yT }, where [0, T ] indicates the
interval where smoothing has to be performed. Given the observations y1:T , adopting
the Bayesian perspective our aim is to derive the a posteriori probability density of the
state sequence

p(x1:T |y1:T ) =
p(y1:T |x1:T )p(x1:T )

p(y1:T )

∝ p(y1:T |x1:T )p(x1:T )

(3)

Applying independence and Markovian assumptions to p(x1:T |y1:T ) and p(x1:T ) yields

p(x1:T |y1:T ) ∝ p(x1)
T∏

t=2

p(xt|xt−1)
T∏

t=1

p(yt|xt) (4)

where p(xt|xt−1) and p(yt|xt) can be derived from equations (1) and (2) respectively.
Equation (4) suggests that the estimate of xt can be updated sequentially when a new
observation becomes available. Sequential state estimation is the focus of this section.

Filtering is online state estimation, where the posterior distribution p(xt|y1:t) is
updated in a sequential fashion. At each time step, we assume that p(xt−1|y1:t−1) is
already known and yt is available, then we use p(xt−1|y1:t−1) and yt to find:

1 the forecast density, p(xt|y1:t−1)

2 the filtering density, p(xt|y1:t).

The sequential update is guaranteed by the following equations:

p(xt|y1:t) = p(xt|yt, y1:t−1)

∝ p(yt|xt, y1:t−1)p(xt|yt−1)

= p(yt|xt)p(xt|yt−1)

= p(yt|xt)

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

(5)
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Smoothing is instead based on a retrospective analysis of filtering. The aim is to obtain
the marginal density p(xt|y1:T ), also refereed to as the smoothing density, from the
posterior p(x1:T |y1:T ) in equation (4). The sequential update of p(xt|y1:T ) can be
recursively implemented as follows. Having p(xt+1|y1:T ) at time t, we can derive
p(xt|y1:T ) from

p(xt|y1:T ) =
∫

p(xt|xt+1, y1:T )p(xt+1|y1:T )dxt+1 (6)

and

p(xt|xt+1, y1:T ) = p(xt|xt+1, y1:t)

∝ p(xt+1|xt, y1:t)p(xt|y1:t)
= p(xt+1|xt)p(xt|y1:t)

(7)

where p(xt|y1:t) is the filtered density. The procedures described in equations (5)–(7)
provide the theoretical basis of sequential state estimation from Bayesian perspective.
They are also known as forward filtering-backward smoothing (Kitagawa, 1996).

We now present a new particle smoother that exploits MCMC sampling to
approximate the marginal smoothing density p(xt|y1:T ). The MCMC technique
generates a Markov chain having as stationary distribution the posterior of interest using
the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970; Gilks et al.,
1996). The idea we develop here is to use such sampler instead of importance sampling
to generate samples from the density p(xt|y1:T ). In particular, our particle smoothing
algorithm is carried out in a forward filtering-backward smoothing procedure, with the
MCMC procedure implemented in a sequential fashion starting from t = T to t = 1.
For t = 1, ..., T , let {x(i)

t }Ni=1 denote the filtering particles coming from the forward
procedure. Then, the new smoothing method is defined by the following two steps:

Step 1 Initialisation, t = T , set {x(i)
T |T }

N
i=1 = {x(i)

T }Ni=1.

Step 2 t = T − 1, ..., 1,

a Randomly choose a sample from {x(j)
t }Nj=1 as the start of the Markov

chain denoted by x
[0]
t|T .

b Set k = k + 1. Then, randomly choose a sample x∗
t from filtering

particle ensemble {x(j)
t }Nj=1, and compute the acceptance probability

α = min

1,

∑N
j=1 p(x

(j)
t+1|T |x

∗
t )∑N

j=1 p(x
(j)
t+1|T |x

[k−1]
t|T )

 .

c Draw a random number z from Uniform distribution U(0, 1). If z ≤ α,
set x[k]

t|T = x∗
t , otherwise set x

[k]
t|T = x

[k−1]
t|T .

d iterate steps b and c N − 1 times, obtaining {x(j)
t|T }

N
j=1 as the output of

the algorithm at instant t.
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The above smoothing procedure can be seen as a resampling operation that, differently
from other particle smoothing approaches, is based on MCMC. At each time step, the
Metropolis-Hastings algorithm is used adopting an approximation of the true acceptance
probability. Notice that, since the state estimation in this smoothing algorithm is
performed sequentially (rather than in batch fashion) no high-dimensional proposal
density needs to be constructed. We call this algorithm ‘M-H particle smoother’ for
simplicity.

3 Numerical illustrations

In this section, we use one widely used example from literatures to test the proposed
particle smoother. The example considers one extensively used nonlinear time series
model from literatures (Gordon et al., 1993; Kitagawa, 1996; Godsill et al., 2004;
Neddermeyer, 2011). The state-space equations are

xt =
xt−1

2
+ 25

xt−1

1 + x2
t−1

+ 8 cos(1.2t) + vt

and

yt =
(xt)

2

20
+ wt

where x1 ∼ N(0, 10), vt ∼ N(0, σ2
v) and wt ∼ N(0, σ2

w), and here σ2
v = 10 and σ2

w =
1 are considered fixed and known. The length of time series is chosen as T = 100.

Figure 1 Posterior probability density functions of xt, (a) p(xt|y1:t) generated by particle
filter (SIR) (b) p(xt|y1:T ) generated by the proposed M-H particle smoother in this
paper (see online version for colours)
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Note: The number of particles is 103.

Figure 1 shows the evolution of posterior distributions p(xt|y1:t) and p(xt|y1:T ), which
are approximated by 1,000 particles. The probability density functions are obtained using
kernel density estimation based on the filtering and smoothing particles (Martinez and
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Martinez, 2002). It can be seen that the smoothing distribution p(xt|y1:T ) is a little
narrower than the filtering distribution p(xt|y1:t).

Table 1 Table of the particle filter and particle smoother algorithms and RMSE for different
particle numbers in the nonlinear time series model

Algorithm N = 100 N = 200 N = 500 N = 1,000

Particle filter (SIR) 5.2929 4.9652 4.4797 4.2765
Doucet et al.’s (2000) particle smoother 3.4881 2.8926 2.0625 1.7076
Tanizaki’s (2001) particle smoother 3.6701 3.1364 2.1446 2.0374
Godsill et al.’s (2004) particle smoother 3.5906 2.9561 2.0934 1.7146
M-H particle smoother 3.6322 3.0159 2.1200 1.7208

There are many variants of particle smoother in literatures; however, it is not our
purpose to compare all of them in this paper. So, we merely select one particle filter
(SIR) (Arulampalam et al., 2002) and three particle smoother algorithms (Doucet et al.,
2000; Tanizaki, 2001; Godsill et al., 2004). In this study, accuracy is measured in terms
of root mean square error (RMSE) based on 100 independent simulations. The number
of particles is N = 100, 200, 500 and 1,000. The results of ensemble simulations are
summarised in Table 1.

4 Conclusions and discussion

In this paper, we have proposed a new simple scheme for particle smoothing. The
proposed M-H particle smoother algorithm is distinct from those based on sequential
Monte Carlo sampling techniques (Kitagawa, 1996; Doucet et al., 2000; Tanizaki,
2001; Godsill et al., 2004; Briers et al., 2010; Fearnhead et al., 2010). Also, although
the idea and procedure of M-H particle smoother algorithm is similar to that of the
classical Metropolis-Hastings algorithm, it is not a ‘strict’ MCMC method. In our
approach, Metropolis-Hastings algorithm is used only to generate smoothing particles
by resampling the filtering particles. The resampling operation is easily implemented
by point-wise comparison of the relative weight of the particles. The performance of
M-H particle smoother algorithm was compared with that relative to other three previous
particle smoother algorithms, also carried out in forward filtering-backward smoothing
procedure. Numerical simulation showed that the M-H particle smoother algorithm is
competitive, resulting in a good state estimator.

All particle smoother mentioned as well as the M-H scheme require the computation
of the transition probability p(xt+1|xt). It is crucial to identify the computation of
transition probabilities when analysing the computational complexity of M-H particle
smoother. The computations of p(xt+1|xt) needed for obtaining one particle at time
t when adopting three representative particle smoother reported in references (Doucet
et al., 2000; Tanizaki, 2001; Godsill et al., 2004; Briers et al., 2010). When M-H
smoothing is adopted, although there are two summations used in evaluating the
acceptance probability, the computational cost is not increased with respect to the other
approaches since each sum is associated with one particle. Therefore, the computational
complexity of M-H particle smoother is O(N2T ), the same as the one relative to the
other four algorithms.
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As the actual computational time is dependent on programming optimisation and
parallelisation, we do not compare the computational time explicitly in this paper. Our
simulation results based on serial computing verified that the proposed M-H particle
smoother algorithm has some advantages in terms of CPU-time too. Here we merely
give a brief discussion on a possible optimisation of the algorithm from the perspective
of parallelisation. For Doucet et al.’s (2000) particle smoother, the initialisation and
re-weighting operations are readily parallelised; therefore, the computational time can
be significantly reduced by parallel computing. Godsill et al.’s (2004) particle smoother
is is most suitable for parallel computing, because the realisations of joint smoothing
distribution p(x1:T |y1:T ) can be generated independently. However, this parallelisation
can only be implemented in distributed computation environment. For Tanizaki’s (2001)
particle smoother, parallel implementation of initialisation and weighting is also feasible,
but resampling is not easy to implement in parallel (Bolić et al., 2005). For M-H
particle smoother, it seems that parallelisation is impossible because Metropolis-Hastings
algorithm is a sequential algorithm. Actually, M-H particle smoother may also benefit
from parallel operations for computing the acceptance probability α. For example,
computing the two summations can be performed by using vertorised operations, a
special parallel computing that can be achieved in many programming environment
such as MATLAB. In addition, one can see that the expressions of numerator and
denominator are similar and many common factors can be cancelled out. Then, the
computational time of M-H smoothing algorithm can be effectively reduced.
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