Seawater Acidification Reduced the Resistance of Crassostrea gigas to Vibrio splendidus Challenge: An Energy Metabolism Perspective | |
Cao, Ruiwen; Liu, Yongliang; Wang, Qing; Yang, Dinglong; Liu, Hui; Ran, Wen; Qu, Yi; Zhao, Jianmin | |
发表期刊 | FRONTIERS IN PHYSIOLOGY |
ISSN | 1664-042X |
2018-07-12 | |
卷号 | 9页码:880 |
关键词 | ocean acidification Crassostrea gigas Vibrio splendidus oxidative stress energy metabolism physiological response |
研究领域 | Physiology |
DOI | 10.3389/fphys.2018.00880 |
产权排序 | [Cao, Ruiwen; Liu, Yongliang; Wang, Qing; Yang, Dinglong; Liu, Hui; Ran, Wen; Qu, Yi; Zhao, Jianmin] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Muping Coastal Environm Res Stn, Yantai, Peoples R China; [Cao, Ruiwen; Wang, Qing; Yang, Dinglong; Liu, Hui; Ran, Wen; Qu, Yi; Zhao, Jianmin] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Res & Dev Ctr Efficient Utilizat Coastal Bioresou, Yantai, Peoples R China; [Cao, Ruiwen; Ran, Wen; Qu, Yi] Univ Chinese Acad Sci, Beijing, Peoples R China |
作者部门 | 海岸带生物资源高效利用研究与发展中心 |
英文摘要 | Negative physiological impacts induced by exposure to acidified seawater might sensitize marine organisms to future environmental stressors, such as disease outbreak. The goal of this study was to evaluate if ocean acidification (OA) could reduce the resistance capability of the Pacific oyster (Crassostrea gigas) to Vibrio splendidus challenge from an energy metabolism perspective. In this study, the Pacific oyster was exposed to OA (pH 7.6) for 28 days and then challenged by V splendidus for another 72 h. Antioxidative responses, lipid peroxidation, metabolic (energy sensors, aerobic metabolism, and anaerobic metabolism) gene expression, glycolytic enzyme activity, and the content of energy reserves (glycogen and protein) were investigated to evaluate the environmental risk of pathogen infection under the condition of OA. Our results demonstrated that following the exposure to seawater acidification, oysters exhibited an energy modulation with slight inhibition of aerobic energy metabolism, stimulation of anaerobic metabolism, and increased glycolytic enzyme activity. However, the energy modulation ability and antioxidative regulation of oysters exposed to seawater acidification may be overwhelmed by a subsequent pathogen challenge, resulting in increased oxidative damage, decreased aerobic metabolism, stimulated anaerobic metabolism, and decreased energy reserves. Overall, although anaerobic metabolism was initiated to partially compensate for inhibited aerobic energy metabolism, increased oxidative damage combined with depleted energy reserves suggested that oysters were in an unsustainable bioenergetic state and were thereby incapable of supporting longterm population viability under conditions of seawater acidification and a pathogen challenge from V. splendidus. |
文章类型 | Article |
资助机构 | Strategic Priority Research Program of the Chinese Academy of Sciences [XDA11020305] ; National Natural Science Foundation of China [31172388] ; Key Research Program of the Chinese Academy of Sciences [KZZDEW-14] ; Science and Technology Service Network Initiative (STS) Project [KFJ-STS-ZDTP-023] ; Instrument Developing Project of the Chinese Academy of Sciences [YJKYYQ20170071] ; Youth Innovation Promotion Association, CAS [2016196] |
收录类别 | SCI |
语种 | 英语 |
关键词[WOS] | CLAM RUDITAPES-PHILIPPINARUM ; INTEGRATED BIOMARKER RESPONSE ; CLIMATE-CHANGE STRESSORS ; FRESH-WATER FISH ; OCEAN ACIDIFICATION ; OXIDATIVE STRESS ; IMMUNE-RESPONSE ; PACIFIC OYSTER ; MYTILUS-EDULIS ; PHYSIOLOGICAL-RESPONSES |
研究领域[WOS] | Physiology |
WOS记录号 | WOS:000438395500001 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.yic.ac.cn/handle/133337/24438 |
专题 | 支撑部门_中国科学院牟平海岸带环境综合试验站 海岸带生物学与生物资源利用重点实验室_海岸带生物学与生物资源保护实验室 海岸带生物学与生物资源利用重点实验室_海岸带生物资源高效利用研究与发展中心 |
作者单位 | 1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Muping Coastal Environm Res Stn, Yantai, Peoples R China; 2.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Res & Dev Ctr Efficient Utilizat Coastal Bioresou, Yantai, Peoples R China; 3.Univ Chinese Acad Sci, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Cao, Ruiwen,Liu, Yongliang,Wang, Qing,et al. Seawater Acidification Reduced the Resistance of Crassostrea gigas to Vibrio splendidus Challenge: An Energy Metabolism Perspective[J]. FRONTIERS IN PHYSIOLOGY,2018,9:880. |
APA | Cao, Ruiwen.,Liu, Yongliang.,Wang, Qing.,Yang, Dinglong.,Liu, Hui.,...&Zhao, Jianmin.(2018).Seawater Acidification Reduced the Resistance of Crassostrea gigas to Vibrio splendidus Challenge: An Energy Metabolism Perspective.FRONTIERS IN PHYSIOLOGY,9,880. |
MLA | Cao, Ruiwen,et al."Seawater Acidification Reduced the Resistance of Crassostrea gigas to Vibrio splendidus Challenge: An Energy Metabolism Perspective".FRONTIERS IN PHYSIOLOGY 9(2018):880. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Seawater Acidificati(3247KB) | 期刊论文 | 出版稿 | 开放获取 | CC BY-NC-SA | 浏览 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论