关键词云

成果统计

合作作者[TOP 5]

访问统计


  总访问量
 3186

  访问来源
    内部: 40
    外部: 3146
    国内: 2966
    国外: 220

  年访问量
 1010

  访问来源
    内部: 4
    外部: 1006
    国内: 979
    国外: 31

  月访问量
 0

  访问来源
    内部: 0
    外部: 0
    国内: 0
    国外: 0

访问量

访问量

1. Stimulation of long-term ammonium nitrogen deposition on methanoge.. [1069]
2. In situ electrochemical synthesis of graphene-poly(arginine) compo.. [874]
3. Proteomics reveal biomethane production process induced by carbon .. [721]
4. 加强电微生物学研究持续利用海岸带新型微生物资源 [661]
5. Augmentation of chloramphenicol degradation by Geobacter-based bio.. [655]
6. Simultaneous intensification of direct acetate cleavage and CO2 re.. [552]
7. Methane production by acetate dismutation stimulated by Shewanella.. [536]
8. Methylobacter accounts for strong aerobic methane oxidation in the.. [527]
9. A practical soil management to improve soil quality by applying mi.. [525]
10. 固相萃取/气相色谱-质谱法测定海水中16种除草剂 [490]
11. Biochar promotes methane production during anaerobic digestion of .. [477]
12. Inhibition effect of polyvinyl chloride on ferrihydrite reduction .. [476]
13. 铁锰氧化物提高巴斯德梭菌电子输出率 [473]
14. The selective expression of carbonic anhydrase genes of Aspergillu.. [449]
15. Effect of Antibiotics on the Microbial Efficiency of Anaerobic Dig.. [447]
16. Reductive degradation of chloramphenicol by Geobacter metallireduc.. [416]
17. A potential contribution of a Fe(III)-rich red clay horizon to met.. [413]
18. Promotion of methane production by magnetite via increasing acetog.. [413]
19. A new insight into the strategy for methane production affected by.. [407]
20. Nano-Fe3O4 particles accelerating electromethanogenesis on an hour.. [403]
21. Biochar promotes methane production at high acetate concentrations.. [399]
22. 异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性 [397]
23. Target-oriented recruitment of Clostridium to promote biohydrogen .. [376]
24. Extraction of electrons by magnetite and ferrihydrite from hydroge.. [369]
25. Carbon nanotubes accelerate acetoclastic methanogenesis: From pure.. [367]
26. A Global View of Gene Expression of Aspergillus nidulans on Respon.. [364]
27. Stimulation of ferrihydrite nanorods on fermentative hydrogen prod.. [359]
28. 含钾岩石微生物转化的分子机制及其碳汇效应 [351]
29. Impacts of the rhizosphere effect and plant species on organic car.. [341]
30. Rhizosphere processes induce changes in dissimilatory iron reducti.. [338]
31. Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production .. [336]
32. Salt-tolerant plant moderates the effect of salinity on soil organ.. [315]
33. Production of biochar from crop residues and its application for a.. [309]
34. Comparative transcriptomic insights into the mechanisms of electro.. [302]
35. Insight into the Variability of the Nitrogen Isotope Composition o.. [297]
36. Advanced catalysts and effect of operating parameters in ethanol d.. [281]
37. Progress in the production of hydrogen energy from food waste: A b.. [279]
38. Rapid removal of chloramphenicol via the synergy of Geobacter and .. [270]
39. Advantage of conductive materials on interspecies electron transfe.. [253]
40. A critical review on the two-stage biohythane production and its v.. [247]
41. 设施种植模式对土壤细菌多样性及群落结构的影响 [245]
42. Inundation depth stimulates plant-mediated CH4 emissions by increa.. [245]
43. Alizarin-graphene nanocomposite for calibration-free and online pH.. [240]
44. Production of hydrogen and value-added carbon materials by catalyt.. [239]
45. 铁锰氧化物提高巴斯德梭菌电子输出率 [235]
46. Production Potential of Greenhouse Gases Affected by Microplastics.. [230]
47. Enhanced methane production by granular activated carbon: A review [229]
48. 含钾岩石微生物转化的分子机制及其碳汇效应 [228]
49. Iron Reduction Controls Carbon Mineralization in Aquaculture Shrim.. [193]
50. Increased Soil Aggregate Stability by Altering Contents and Chemic.. [189]
51. Methylobacter couples methane oxidation and N2O production in hypo.. [181]
52. Aquaculture drastically increases methane production by favoring a.. [162]
53. 海岸带蓝碳增汇:理念、技术与未来建议 [106]
54. Biomethane is produced by acetate cleavage, not direct interspecie.. [92]
55. Warming-dominated climate change impacts on soil organic carbon fr.. [84]
56. 一种高效定向富集分离产氢菌的方法 [74]
57. A review on pretreatment methods, photobioreactor design and metab.. [67]
58. 一种提高产氢菌氢产量的方法 [65]
59. 一种经济便捷的微生物辅助防火制剂 [62]
60. 多功能双酶梭菌及其应用 [62]
61. 一种调控厌氧污泥降解产乙酸和丁酸的方法 [61]
62. Climate and mineral accretion as drivers of mineral-associated and.. [54]
63. Moderate increase of precipitation stimulates CO2 produ.. [45]
64. 加强电微生物学研究 持续利用海岸带新型微生物资源 [19]
65. Pore connectivity and anisotropy affect carbon mineralization via .. [1]
66. Widespread crab burrows enhance greenhouse gas emissions from coas.. [1]
67. Direct interspecies electron transfer for environmental treatment .. [1]
68. Moderate increase of precipitation stimulates CO2 produ.. [1]

下载量

1. Stimulation of long-term ammonium nitrogen deposition on methanoge.. [505]
2. In situ electrochemical synthesis of graphene-poly(arginine) compo.. [303]
3. A practical soil management to improve soil quality by applying mi.. [284]
4. Augmentation of chloramphenicol degradation by Geobacter-based bio.. [242]
5. Proteomics reveal biomethane production process induced by carbon .. [225]
6. Methylobacter accounts for strong aerobic methane oxidation in the.. [161]
7. Simultaneous intensification of direct acetate cleavage and CO2 re.. [148]
8. Methane production by acetate dismutation stimulated by Shewanella.. [142]
9. Inhibition effect of polyvinyl chloride on ferrihydrite reduction .. [129]
10. 加强电微生物学研究持续利用海岸带新型微生物资源 [127]
11. A new insight into the strategy for methane production affected by.. [125]
12. 铁锰氧化物提高巴斯德梭菌电子输出率 [124]
13. Reductive degradation of chloramphenicol by Geobacter metallireduc.. [120]
14. 固相萃取/气相色谱-质谱法测定海水中16种除草剂 [113]
15. Nano-Fe3O4 particles accelerating electromethanogenesis on an hour.. [112]
16. The selective expression of carbonic anhydrase genes of Aspergillu.. [110]
17. Stimulation of ferrihydrite nanorods on fermentative hydrogen prod.. [110]
18. Extraction of electrons by magnetite and ferrihydrite from hydroge.. [105]
19. Biochar promotes methane production at high acetate concentrations.. [102]
20. A potential contribution of a Fe(III)-rich red clay horizon to met.. [89]
21. 异化铁还原梭菌Clostridium bifermentans EZ-1产氢与电化学特性 [86]
22. Biochar promotes methane production during anaerobic digestion of .. [83]
23. A Global View of Gene Expression of Aspergillus nidulans on Respon.. [78]
24. Insight into the Variability of the Nitrogen Isotope Composition o.. [71]
25. Rhizosphere processes induce changes in dissimilatory iron reducti.. [69]
26. Target-oriented recruitment of Clostridium to promote biohydrogen .. [45]
27. Carbon nanotubes accelerate acetoclastic methanogenesis: From pure.. [44]
28. Ferrihydrite Reduction Exclusively Stimulated Hydrogen Production .. [44]
29. Impacts of the rhizosphere effect and plant species on organic car.. [42]
30. 含钾岩石微生物转化的分子机制及其碳汇效应 [35]
31. Effect of Antibiotics on the Microbial Efficiency of Anaerobic Dig.. [33]
32. 铁锰氧化物提高巴斯德梭菌电子输出率 [23]
33. 含钾岩石微生物转化的分子机制及其碳汇效应 [22]
34. Comparative transcriptomic insights into the mechanisms of electro.. [15]