Interspecies Electron Transfer via Hydrogen and Formate Rather than Direct Electrical Connections in Cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens | |
Rotaru, Amelia-Elena ; Shrestha, Pravin M. ; Liu, Fanghua ; Ueki, Toshiyuki ; Nevin, Kelly ; Summers, Zarath M. ; Lovley, Derek R. | |
部门归属 | 海岸带生物学与生物资源利用所重点实验室 |
通讯作者 | Rotaru, AE (reprint author), Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA.,[email protected] |
学科主题 | Biotechnology & Applied Microbiology ; Microbiology |
关键词 | Anaerobic-bacteria Gene-expression Oxide Reduction Fe(Iii) Acetate Metabolism Butyrate Genome Environments Respiration |
出处 | APPLIED AND ENVIRONMENTAL MICROBIOLOGY |
ISSN号 | 0099-2240 |
2012 | |
卷 | 78期:21页:7645-7651 |
收录类别 | SCI |
产权排序 | [Rotaru, Amelia-Elena; Shrestha, Pravin M.; Liu, Fanghua; Ueki, Toshiyuki; Nevin, Kelly; Summers, Zarath M.; Lovley, Derek R.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA |
资助信息 | Office of Science (BER), U.S. Department of Energy [DE-SC0004485] |
英文摘要 | Direct interspecies electron transfer (DIET) is an alternative to interspecies H-2/formate transfer as a mechanism for microbial species to cooperatively exchange electrons during syntrophic metabolism. To understand what specific properties contribute to DIET, studies were conducted with Pelobacter carbinolicus, a close relative of Geobacter metallireducens, which is capable of DIET. P. carbinolicus grew in coculture with Geobacter sulfurreducens with ethanol as the electron donor and fumarate as the electron acceptor, conditions under which G. sulfurreducens formed direct electrical connections with G. metallireducens. In contrast to the cell aggregation associated with DIET, P. carbinolicus and G. sulfurreducens did not aggregate. Attempts to initiate cocultures with a genetically modified strain of G. sulfurreducens incapable of both H-2 and formate utilization were unsuccessful, whereas cocultures readily grew with mutant strains capable of formate but not H-2 uptake or vice versa. The hydrogenase mutant of G. sulfurreducens compensated, in cocultures, with significantly increased formate dehydrogenase gene expression. In contrast, the transcript abundance of a hydrogenase gene was comparable in cocultures with that for the formate dehydrogenase mutant of G. sulfurreducens or the wild type, suggesting that H-2 was the primary electron carrier in the wild-type cocultures. Cocultures were also initiated with strains of G. sulfurreducens that could not produce pili or OmcS, two essential components for DIET. The finding that P. carbinolicus exchanged electrons with G. sulfurreducens via interspecies transfer of H-2/formate rather than DIET demonstrates that not all microorganisms that can grow syntrophically are capable of DIET and that closely related microorganisms may use significantly different strategies for interspecies electron exchange. |
语种 | 英语 |
文献类型 | 共享期刊论文 |
条目标识符 | http://ir.yic.ac.cn/handle/133337/6310 |
专题 | 科研共享资源 |
推荐引用方式 GB/T 7714 | Rotaru, Amelia-Elena,Shrestha, Pravin M.,Liu, Fanghua,et al. Interspecies Electron Transfer via Hydrogen and Formate Rather than Direct Electrical Connections in Cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. 2012. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Interspecies Electro(1252KB) | 限制开放 | -- | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论