Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models
Gao, Meng1; Zhang, Hui2
发表期刊COMPUTERS & GEOSCIENCES
ISSN0098-3004
2012-07-01
卷号44页码:70-77
关键词Maximum Likelihood Expectation-maximization Markov Chain Monte Carlo Bayesian Inference
DOI10.1016/j.cageo.2012.03.013
产权排序[Gao, Meng] Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China; [Zhang, Hui] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
通讯作者Gao, M (reprint author), Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China.,[email protected]
作者部门海岸带信息集成与综合管理实验室
英文摘要Stochastic nonlinear state-space models (SSMs) are prototypical mathematical models in geoscience. Estimating unknown parameters in nonlinear SSMs is an important issue for environmental modeling. In this paper, we present two recently developed methods that are based on the sequential Monte Carlo (SMC) method for parameter estimation in nonlinear SSMs. The first method, which belongs to classical statistics, is the SMC-based maximum likelihood estimation. The second method, belonging to Bayesian statistics, is Particle Markov Chain Monte Carlo (PMCMC). With a low-dimensional nonlinear SSM, the implementations of the two methods are demonstrated. It is concluded that these SMC-based parameter estimation methods are applicable to environmental modeling and geoscience. (C) 2012 Elsevier Ltd. All rights reserved.
文章类型Article
资助机构Knowledge Innovation Project of CAS[KZCX2-EW-QN209]; NNSF of China[31000197] ; Knowledge Innovation Project of CAS KZCX2-EW-QN209 ; NNSF of China 31000197
收录类别SCI
语种英语
关键词[WOS]DATA ASSIMILATION ; SAMPLING METHODS ; TUTORIAL
研究领域[WOS]Computer Science ; Geology
WOS记录号WOS:000306034100008
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cn/handle/133337/6166
专题中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
作者单位1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China
2.Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
推荐引用方式
GB/T 7714
Gao, Meng,Zhang, Hui. Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models[J]. COMPUTERS & GEOSCIENCES,2012,44:70-77.
APA Gao, Meng,&Zhang, Hui.(2012).Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models.COMPUTERS & GEOSCIENCES,44,70-77.
MLA Gao, Meng,et al."Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models".COMPUTERS & GEOSCIENCES 44(2012):70-77.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Sequential Monte Car(1063KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Meng]的文章
[Zhang, Hui]的文章
百度学术
百度学术中相似的文章
[Gao, Meng]的文章
[Zhang, Hui]的文章
必应学术
必应学术中相似的文章
[Gao, Meng]的文章
[Zhang, Hui]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Sequential Monte Carlo methods for parameter estimation in nonlinear state-space models.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。