Rice Identification Under Complex Surface Conditions with CNN and Integrated Remote Sensing Spectral-Temporal-Spatial Features
Liu, Tianjiao1; Duan, Sibo1; Chen, Jiankui2; Zhang, Li3; Li, Dong4; Li, Xuqing5
发表期刊PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING
ISSN0099-1112
2023-12-01
卷号89期号:12页码:64
DOI10.14358/PERS.23-00036R2
通讯作者Duan, Sibo([email protected])
英文摘要Accurate and effective rice identification has great significance for the sustainable development of agricultural management and food security. This paper proposes an accurate rice identification method that can solve the confused problem between fragmented rice fields and the surroundings in complex surface areas. The spectral, temporal, and spatial features extracted from the created Sentinel-2 time series were integrated and collaboratively displayed in the form of visual images, and a convolutional neural network model embedded with integrated information was established to further mine the key information that distinguishes rice from other types. The results showed that the overall accuracy, precision, recall, and F1-score of the proposed method for rice identification reached 99.4%, 99.5%, 99.5%, and 99.5%, respectively, achieving a better performance than the support vector machine classifier. Therefore, the proposed method can effectively reduce the confusion between rice and other types and accurately extract rice distribution information under complex surface conditions.
资助机构Hebei Provincial Natural Science Foundation Project ; Major Project of High-Resolution Earth Observation System ; Doctoral Research Project
收录类别SCI
语种英语
关键词[WOS]TEXTURAL FEATURES ; CLASSIFICATION ; AREA ; MODIS ; BAND ; PERFORMANCE ; LANDSAT ; INDEXES ; IMAGERY ; FIELDS
研究领域[WOS]Physical Geography ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001127821800003
引用统计
文献类型期刊论文
条目标识符http://ir.yic.ac.cn/handle/133337/36297
专题中国科学院海岸带环境过程与生态修复重点实验室
中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
通讯作者Duan, Sibo
作者单位1.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing, Peoples R China
2.Hebei Oriental Univ, Sch Artificial Intelligence, Langfang, Peoples R China
3.GuiZhou Univ, Coll Big Data & Informat Engn, Guiyang, Peoples R China
4.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai, Peoples R China
5.North China Inst Aerosp Engn, Langfang 065000, Peoples R China
推荐引用方式
GB/T 7714
Liu, Tianjiao,Duan, Sibo,Chen, Jiankui,et al. Rice Identification Under Complex Surface Conditions with CNN and Integrated Remote Sensing Spectral-Temporal-Spatial Features[J]. PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING,2023,89(12):64.
APA Liu, Tianjiao,Duan, Sibo,Chen, Jiankui,Zhang, Li,Li, Dong,&Li, Xuqing.(2023).Rice Identification Under Complex Surface Conditions with CNN and Integrated Remote Sensing Spectral-Temporal-Spatial Features.PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING,89(12),64.
MLA Liu, Tianjiao,et al."Rice Identification Under Complex Surface Conditions with CNN and Integrated Remote Sensing Spectral-Temporal-Spatial Features".PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING 89.12(2023):64.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Tianjiao]的文章
[Duan, Sibo]的文章
[Chen, Jiankui]的文章
百度学术
百度学术中相似的文章
[Liu, Tianjiao]的文章
[Duan, Sibo]的文章
[Chen, Jiankui]的文章
必应学术
必应学术中相似的文章
[Liu, Tianjiao]的文章
[Duan, Sibo]的文章
[Chen, Jiankui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。