Fuzzy graph convolutional network for hyperspectral image classification
Xu, Jindong1; Li, Kang1,2; Li, Ziyi1; Chong, Qianpeng1; Xing, Haihua3; Xing, Qianguo4; Ni, Mengying1
发表期刊ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
ISSN0952-1976
2024
卷号127页码:13
关键词Graph convolutional network Hyperspectral image Image classification Fuzzy logic Graph construction method
DOI10.1016/j.engappai.2023.107280
通讯作者Ni, Mengying([email protected])
英文摘要-Graph convolutional network (GCN) has attracted much attention in the field of hyperspectral image classification for its excellent feature representation and convolution on arbitrarily structured non-Euclidean data. However, most state-of-the-art methods build a graph utilize the distance measure, which makes it challenging to fully characterize the complex relationship of hyperspectral remote sensing data. Moreover, the hyperspectral image usually has uncertainty introduced by the problems of the spectral variability and noise interference. This article uses fuzzy theory to optimize the GCN and thus solve the uncertainty problem in hyperspectral images, and presents a novel fuzzy graph convolutional network (F-GCN) for hyperspectral image classification. By calculating the fuzzy similarity of samples, a robust graph is first built rather than using the traditional Euclidean distance method, which allows a better representation of the complex relationship between hyperspectral remote sensing data. Furthermore, the proposed network introduces fuzzy layers into the model to cope with the ambiguity of the hyperspectral image. Finally, the classification results for three real-world hyperspectral data sets to show its feasibility and effectiveness in hyperspectral image classification.
资助机构National Natural Science Foundation of China ; Shandong Provincial Natural Science Foundation of China
收录类别SCI
语种英语
研究领域[WOS]Automation & Control Systems ; Computer Science ; Engineering
WOS记录号WOS:001243181100001
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cn/handle/133337/35969
专题中国科学院海岸带环境过程与生态修复重点实验室
中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
通讯作者Ni, Mengying
作者单位1.Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
2.Quan Cheng Lab, Jinan 250100, Peoples R China
3.Hainan Normal Univ, Coll Informat Sci & Technol, Haikou 571158, Peoples R China
4.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China
推荐引用方式
GB/T 7714
Xu, Jindong,Li, Kang,Li, Ziyi,et al. Fuzzy graph convolutional network for hyperspectral image classification[J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,2024,127:13.
APA Xu, Jindong.,Li, Kang.,Li, Ziyi.,Chong, Qianpeng.,Xing, Haihua.,...&Ni, Mengying.(2024).Fuzzy graph convolutional network for hyperspectral image classification.ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE,127,13.
MLA Xu, Jindong,et al."Fuzzy graph convolutional network for hyperspectral image classification".ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 127(2024):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xu, Jindong]的文章
[Li, Kang]的文章
[Li, Ziyi]的文章
百度学术
百度学术中相似的文章
[Xu, Jindong]的文章
[Li, Kang]的文章
[Li, Ziyi]的文章
必应学术
必应学术中相似的文章
[Xu, Jindong]的文章
[Li, Kang]的文章
[Li, Ziyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。