SSANet: An Adaptive Spectral-Spatial Attention Autoencoder Network for Hyperspectral Unmixing
Wang, Jie1; Xu, Jindong1; Chong, Qianpeng1; Liu, Zhaowei1; Yan, Weiqing1; Xing, Haihua2; Xing, Qianguo3; Ni, Mengying1
发表期刊REMOTE SENSING
2023-04-01
卷号15期号:8页码:21
关键词hyperspectral unmixing spectral-spatial attention mechanism deep learning autoencoder
DOI10.3390/rs15082070
通讯作者Ni, Mengying([email protected])
英文摘要Convolutional neural-network-based autoencoders, which can integrate the spatial correlation between pixels well, have been broadly used for hyperspectral unmixing and obtained excellent performance. Nevertheless, these methods are hindered in their performance by the fact that they treat all spectral bands and spatial information equally in the unmixing procedure. In this article, we propose an adaptive spectral-spatial attention autoencoder network, called SSANet, to solve the mixing pixel problem of the hyperspectral image. First, we design an adaptive spectral-spatial attention module, which refines spectral-spatial features by sequentially superimposing the spectral attention module and spatial attention module. The spectral attention module is built to select useful spectral bands, and the spatial attention module is designed to filter spatial information. Second, SSANet exploits the geometric properties of endmembers in the hyperspectral image while considering abundance sparsity. We significantly improve the endmember and abundance results by introducing minimum volume and sparsity regularization terms into the loss function. We evaluate the proposed SSANet on one synthetic dataset and four real hyperspectral scenes, i.e., Samson, Jasper Ridge, Houston, and Urban. The results indicate that the proposed SSANet achieved competitive unmixing results compared with several conventional and advanced unmixing approaches with respect to the root mean square error and spectral angle distance.
收录类别SCI
语种英语
关键词[WOS]SPARSE COMPONENT ANALYSIS
研究领域[WOS]Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000977424900001
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cn/handle/133337/32900
专题中国科学院海岸带环境过程与生态修复重点实验室
中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
通讯作者Ni, Mengying
作者单位1.Yantai Univ, Sch Comp & Control Engn, Yantai 264005, Peoples R China
2.Hainan Normal Univ, Sch Informat Sci & Technol, Haikou 571158, Peoples R China
3.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai 264003, Peoples R China
推荐引用方式
GB/T 7714
Wang, Jie,Xu, Jindong,Chong, Qianpeng,et al. SSANet: An Adaptive Spectral-Spatial Attention Autoencoder Network for Hyperspectral Unmixing[J]. REMOTE SENSING,2023,15(8):21.
APA Wang, Jie.,Xu, Jindong.,Chong, Qianpeng.,Liu, Zhaowei.,Yan, Weiqing.,...&Ni, Mengying.(2023).SSANet: An Adaptive Spectral-Spatial Attention Autoencoder Network for Hyperspectral Unmixing.REMOTE SENSING,15(8),21.
MLA Wang, Jie,et al."SSANet: An Adaptive Spectral-Spatial Attention Autoencoder Network for Hyperspectral Unmixing".REMOTE SENSING 15.8(2023):21.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Jie]的文章
[Xu, Jindong]的文章
[Chong, Qianpeng]的文章
百度学术
百度学术中相似的文章
[Wang, Jie]的文章
[Xu, Jindong]的文章
[Chong, Qianpeng]的文章
必应学术
必应学术中相似的文章
[Wang, Jie]的文章
[Xu, Jindong]的文章
[Chong, Qianpeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。