Bait microalga harboring antimicrobial peptide for controlling Vibrio infection in Argopecten irradians aquaculture | |
Wang, Kang1,3; Jiao, Xudong1; Chu, Jinling1; Liu, Ping1,4; Han, Subing1,4; Hu, Zhangli5; Qin, Song1,3; Cui, Yulin1,2 | |
发表期刊 | AQUACULTURE |
ISSN | 0044-8486 |
2023-02-25 | |
卷号 | 565页码:9 |
关键词 | Vibrio NZ2114 Tetraselmis subcordiformis Oral drug -delivery system Scallops |
DOI | 10.1016/j.aquaculture.2022.739128 |
通讯作者 | Qin, Song([email protected]) ; Cui, Yulin([email protected]) |
英文摘要 | Vibrio infection is a longstanding and serious bacterial disease of various shellfish species that has caused high mortality rates for many decades. Antibiotics can effectively prevent and control bacterial diseases. However, the long-term abuse of antibiotics exacerbates the risk of environmental pollution, which also poses a threat to food safety. In this study, transgenic lines of the marine microalga Tetraselmis subcordiformis harboring antimicrobial peptide NZ2114 were attempted to be created as an oral drug-delivery system in shellfish aquaculture. Toward this, codon-optimized nz2114 was respectively assembled into nuclear and chloroplast expression vectors of T. subcordiformis. After particle bombardment, two stable transgenic lines Y1 (with nuclear transformation) and Y2 (with chloroplast transformation) were selected, each expressing a stable transgene inheritance for at least 12 months. In vitro experiments demonstrated the significant inhibition of total protein containing NZ2114 from transgenic lines on two marine Vibrio species and Staphylococcus aureus. To test the efficacy of transgenic baits, pathogen-infected scallops (Argopecten irradians) were fed with transgenic T. subcordiformis via oral delivery. The results showed that the survival rate (after 20 days of infection) of the scallops fed transgenic T. subcordiformis was much higher than that of scallop fed with wild-type algae (95.92% versus 80.41%). In summary, this strategy offers a new, efficient, and low-cost method for controlling Vibrio in scallop aquaculture through oral drug -delivery system, which is a promising step toward the development of safe and environment-friendly antimi-crobial baits. |
资助机构 | National Natural Science Foundation of China ; Project of Innovation and Development of Marine Economy |
收录类别 | SCI |
语种 | 英语 |
关键词[WOS] | PICHIA-PASTORIS ; EXPRESSION ; CHLOROPLAST ; CULTIVATION ; CHLOROPHYTA ; PLECTASIN |
研究领域[WOS] | Fisheries ; Marine & Freshwater Biology |
WOS记录号 | WOS:000901253800004 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.yic.ac.cn/handle/133337/32462 |
专题 | 海岸带生物学与生物资源利用重点实验室 海岸带生物学与生物资源利用重点实验室_海岸带生物学与生物资源保护实验室 |
通讯作者 | Qin, Song; Cui, Yulin |
作者单位 | 1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Key Lab Coastal Biol & Biol Resource Utilizat, Yantai 264003, Peoples R China 2.Binzhou Med Univ, Sch Pharm, Sch Enol, Yantai 264003, Shandong, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Yantai Univ, Coll Life Sci, Yantai 264005, Peoples R China 5.Shenzhen Univ, Coll Life Sci & Oceanog, Shenzhen 518061, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Kang,Jiao, Xudong,Chu, Jinling,et al. Bait microalga harboring antimicrobial peptide for controlling Vibrio infection in Argopecten irradians aquaculture[J]. AQUACULTURE,2023,565:9. |
APA | Wang, Kang.,Jiao, Xudong.,Chu, Jinling.,Liu, Ping.,Han, Subing.,...&Cui, Yulin.(2023).Bait microalga harboring antimicrobial peptide for controlling Vibrio infection in Argopecten irradians aquaculture.AQUACULTURE,565,9. |
MLA | Wang, Kang,et al."Bait microalga harboring antimicrobial peptide for controlling Vibrio infection in Argopecten irradians aquaculture".AQUACULTURE 565(2023):9. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论