Estimating Chemical Oxygen Demand in estuarine urban rivers using unmanned aerial vehicle hyperspectral images
Cai, Jiannan1,2; Meng, Ling3,4; Liu, Hailong3,4; Chen, Jun1; Xing, Qianguo3,4
发表期刊ECOLOGICAL INDICATORS
ISSN1470-160X
2022-06-01
卷号139页码:11
关键词Hyperspectral Chemical Oxygen Demand (COD) Urban river 1D-CNN UAV
DOI10.1016/j.ecolind.2022.108936
英文摘要In this study, we combined ground-based hyperspectral data, unmanned aerial vehicles (UAVs) remotely sensed hyperspectral images, and 1D-CNN algorithms to quantitatively characterize and estimate the Chemical Oxygen Demand (COD) of estuarine urban rivers. The spectral response mechanism of COD is imprecise due to its complex composition; however, we found that hyperspectral remote sensing data could be used for COD monitoring because of the data's rich spectral information. The potential of hyperspectral sensors installed on UAVs to estimate and map the COD of urban rivers has not been thoroughly explored. We used in situ above water hyperspectral data from 498 sites and synchronous water samples in band ratio, SVM, and 1D-CNN algorithms to build retrieval models. We found that the 1D-CNN model performed the best with an R-2 of 0.78 and an RMSE of 5.22 when using the original reflectance data as input. The 1D-CNN model may also have a better ability to identify water samples with abnormally high concentrations. Our results revealed that transferring the ground-based derived 1D-CNN retrieval model for COD to the high-resolution hyperspectral images is a reliable method for determining COD from the images. We concluded that UAV remotely sensed hyperspectral images are valuable for COD concentration monitoring and mapping, critical to urban water quality management decision making.
收录类别SCI
语种英语
关键词[WOS]SUPPORT VECTOR REGRESSION ; WATER-QUALITY PARAMETERS ; LAKE ; ABSORPTION ; CARBON
研究领域[WOS]Biodiversity & Conservation ; Environmental Sciences & Ecology
WOS记录号WOS:000804180400002
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cn/handle/133337/31129
专题中国科学院海岸带环境过程与生态修复重点实验室
中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
通讯作者Chen, Jun; Xing, Qianguo
作者单位1.Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Xi'an, Peoples R China
2.Zhongshan Municipal Ecol Environm Bur, Zhongshan, Peoples R China
3.Chinese Acad Sci, Yantai Inst Coastal Zone Res, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Peoples R China
4.Shandong Key Lab Coastal Environm Proc, Yantai 264003, Peoples R China
推荐引用方式
GB/T 7714
Cai, Jiannan,Meng, Ling,Liu, Hailong,et al. Estimating Chemical Oxygen Demand in estuarine urban rivers using unmanned aerial vehicle hyperspectral images[J]. ECOLOGICAL INDICATORS,2022,139:11.
APA Cai, Jiannan,Meng, Ling,Liu, Hailong,Chen, Jun,&Xing, Qianguo.(2022).Estimating Chemical Oxygen Demand in estuarine urban rivers using unmanned aerial vehicle hyperspectral images.ECOLOGICAL INDICATORS,139,11.
MLA Cai, Jiannan,et al."Estimating Chemical Oxygen Demand in estuarine urban rivers using unmanned aerial vehicle hyperspectral images".ECOLOGICAL INDICATORS 139(2022):11.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cai, Jiannan]的文章
[Meng, Ling]的文章
[Liu, Hailong]的文章
百度学术
百度学术中相似的文章
[Cai, Jiannan]的文章
[Meng, Ling]的文章
[Liu, Hailong]的文章
必应学术
必应学术中相似的文章
[Cai, Jiannan]的文章
[Meng, Ling]的文章
[Liu, Hailong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。