An Improved DDV Algorithm for the Retrieval of Aerosol Optical Depth From NOAA/AVHRR Data
Li, Ruibo1; Sun, Lin1; Yu, Huiyong1; Wei, Jing2; Tian, Xinpeng3
发表期刊JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING
ISSN0255-660X
2021-01-19
页码12
关键词AVHRR AOD MODIS VI product DDV algorithm
DOI10.1007/s12524-020-01301-6
通讯作者Sun, Lin([email protected])
英文摘要Aerosol Optical Depth (AOD) is one of the important parameters to characterize the physical properties of the atmospheric aerosol, which is used to describe the extinction characteristics of the aerosol, and also to calculate the aerosol content, to assess the degree of air pollution and to study aerosol climate effect. To study the historical change of aerosol in long-time series, the advanced very high resolution radiometer (AVHRR) data earliest used for aerosol research was used in this study. Due to the lack of shortwave infrared (SWIR) (center at 2.13 mu m) of the sensor, the relationship between the blue and red bands with SWIR cannot be provided, and the visible band used to calculate the normalized difference vegetation index (NDVI) contains the wavelength range of red and green, it is very difficult to calculate the accurate land surface reflectance (LSR). Therefore, based on the Dense Dark Vegetation algorithm (DDV), we propose to introduce mature MODIS vegetation index products (MYD13) to correct AVHRR NDVI, to support the estimation of AVHRR LSR, determine the relationship between corrected AVHRR NDVI and visible band LSR, and to carry out aerosol retrieval. The results show that about 63% of the data are within the error line, and there is a consistent distribution trend in the inter-comparison validation with MODIS aerosol products (MYD04).
资助机构National Natural Science Foundation of China ; Shandong Provincial Natural Science Foundation, China
收录类别SCI
语种英语
研究领域[WOS]Environmental Sciences & Ecology ; Remote Sensing
WOS记录号WOS:000608952300002
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.yic.ac.cn/handle/133337/27499
专题中国科学院海岸带环境过程与生态修复重点实验室
中国科学院海岸带环境过程与生态修复重点实验室_海岸带环境过程实验室
中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心
通讯作者Sun, Lin
作者单位1.Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Shandong, Peoples R China
2.Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
3.Chinese Acad Sci, Yantai Inst Coastal Zone Res, CAS Key Lab Coastal Environm Proc & Ecol Remediat, Yantai 264003, Shandong, Peoples R China
推荐引用方式
GB/T 7714
Li, Ruibo,Sun, Lin,Yu, Huiyong,et al. An Improved DDV Algorithm for the Retrieval of Aerosol Optical Depth From NOAA/AVHRR Data[J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING,2021:12.
APA Li, Ruibo,Sun, Lin,Yu, Huiyong,Wei, Jing,&Tian, Xinpeng.(2021).An Improved DDV Algorithm for the Retrieval of Aerosol Optical Depth From NOAA/AVHRR Data.JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING,12.
MLA Li, Ruibo,et al."An Improved DDV Algorithm for the Retrieval of Aerosol Optical Depth From NOAA/AVHRR Data".JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING (2021):12.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
An Improved DDV Algo(2974KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Ruibo]的文章
[Sun, Lin]的文章
[Yu, Huiyong]的文章
百度学术
百度学术中相似的文章
[Li, Ruibo]的文章
[Sun, Lin]的文章
[Yu, Huiyong]的文章
必应学术
必应学术中相似的文章
[Li, Ruibo]的文章
[Sun, Lin]的文章
[Yu, Huiyong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: An Improved DDV Algorithm for the Retrieval of Aerosol Optical Depth From NOAA AVHRR Data.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。