Quantile Regression-Based Spatiotemporal Analysis of Extreme Temperature Change in China | |
Gao, Meng1; Franzke, Christian L. E.2,3; Gao, Meng(Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai, Peoples R China) | |
发表期刊 | JOURNAL OF CLIMATE |
ISSN | 0894-8755 |
2017-12-01 | |
卷号 | 30期号:24页码:9897-9914 |
关键词 | SURFACE AIR-TEMPERATURE ARCTIC OSCILLATION CLIMATE-CHANGE PRECIPITATION EXTREMES HYDROLOGICAL SERIES MODEL SIMULATIONS EASTERN CHINA DETECT TREND LONG-MEMORY ENSO |
研究领域 | Meteorology & Atmospheric Sciences |
DOI | 10.1175/JCLI-D-17-0356.1 |
产权排序 | 第1完成单位 |
作者部门 | 海岸带信息集成与综合管理实验室 |
英文摘要 | In this study, temporal trends and spatial patterns of extreme temperature change are investigated at 352 meteorological stations in China over the period 1956-2013. The temperature series are first examined for evidence of long-range dependence at daily and monthly time scales. At most stations there is evidence of significant long-range dependence. Noncrossing quantile regression has been used for trend analysis of temperature series. For low quantiles of daily mean temperature and monthly minimum value of daily minimum temperature (TNn) in January, there is an increasing trend at most stations. A decrease is also observed in a zone ranging from northeastern China to central China for higher quantiles of daily mean temperature and monthly maximum value of daily maximum temperature (TXx) in July. Changes of the large-scale atmospheric circulation partly explain the trends of temperature extremes. To reveal the spatial pattern of temperature changes, a density-based spatial clustering algorithm is used to cluster the quantile trends of daily temperature series for 19 quantile levels (0.05, 0.1,..., 0.95). Spatial cluster analysis identifies a few large clusters showing different warming patterns in different parts of China. Finally, quantile regression reveals the connections between temperature extremes and two large-scale climate patterns: El Nino-Southern Oscillation (ENSO) and the Arctic Oscillation (AO). The influence of ENSO on cold extremes is significant at most stations, but its influence on warm extremes is only weakly significant. The AO not only affects the cold extremes in northern and eastern China, but also affects warm extremes in northeastern and southern China. |
文章类型 | Article |
资助机构 | Youth Innovation Promotion Association of CAS(2016195) ; CAS Knowledge Innovation Project(KZCX2-EW-QN209) ; National Natural Science Foundation of China(31570423) ; German Research Foundation through the collaborative research center "Energy transfers in atmosphere and ocean" at the University of Hamburg(TRR181) |
收录类别 | SCI |
语种 | 英语 |
关键词[WOS] | SURFACE AIR-TEMPERATURE ; ARCTIC OSCILLATION ; CLIMATE-CHANGE ; PRECIPITATION EXTREMES ; HYDROLOGICAL SERIES ; MODEL SIMULATIONS ; EASTERN CHINA ; DETECT TREND ; LONG-MEMORY ; ENSO |
研究领域[WOS] | Meteorology & Atmospheric Sciences |
WOS记录号 | WOS:000423492500006 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.yic.ac.cn/handle/133337/23569 |
专题 | 中国科学院海岸带环境过程与生态修复重点实验室_海岸带信息集成与战略规划研究中心 |
通讯作者 | Gao, Meng; Gao, Meng(Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai, Peoples R China) |
作者单位 | 1.Chinese Acad Sci, Yantai Inst Coastal Zone Res, Yantai, Peoples R China 2.Univ Hamburg, Inst Meteorol, Hamburg, Germany 3.Univ Hamburg, Ctr Earth Syst Res & Sustainabil, Hamburg, Germany |
推荐引用方式 GB/T 7714 | Gao, Meng,Franzke, Christian L. E.,Gao, Meng. Quantile Regression-Based Spatiotemporal Analysis of Extreme Temperature Change in China[J]. JOURNAL OF CLIMATE,2017,30(24):9897-9914. |
APA | Gao, Meng,Franzke, Christian L. E.,&Gao, Meng.(2017).Quantile Regression-Based Spatiotemporal Analysis of Extreme Temperature Change in China.JOURNAL OF CLIMATE,30(24),9897-9914. |
MLA | Gao, Meng,et al."Quantile Regression-Based Spatiotemporal Analysis of Extreme Temperature Change in China".JOURNAL OF CLIMATE 30.24(2017):9897-9914. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论