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Conventional methods for soil element content determination based on laboratory analyses are costly and time-
consuming. A soil reflectance spectrum is an alternative approach for soil element content estimation with the
advantage of being rapid, non-destructive, and cost effective. Visible/near-infrared spectra (350 nm to
2500 nm) were measured from 105 soil samples originating from 30 apple orchards on the Jiaodong peninsula.
The Savitzky–Golay (FD-SG) technique for spectral data was implemented to reduce the signal noise. Logarithm
of the reciprocal of reflectance (logR−1) and the first derivative transformation (DR)were used to accentuate the
features and to prepare the data for use in quantitative estimation models. The SI (sum index), DI (difference
index), PI (product index), RI (ratio index), andNDI (normalizeddifference index)were calculated to extract sen-
sitive waveband combinations that are significantly related to soil element contents. Soil element contents were
retrieved based on sensitive waveband combinations by multiple linear stepwise regression (MLSR) and partial
least square (PLSR) models. The results showed that DR performed better than logR−1 in eliminating the inter-
fering factors of soil particle size and spectral noise. TheMLSR and PLSR calibrationmodels based on PI performed
better than those based on SI or DI did. The MLSR performed better than PLSR in estimating soil elemental con-
tent. The contents of total nitrogen (TN), arsenic (As), andmercury (Hg) could be estimatedwell usingMLSR and
PLSR calibrationmodels developedwith PI. TheMLSR calibrationmodel developedwith PI performedwell in es-
timating available potassium (A-K) content. However, the contents of available phosphorus (A-P), ammonium
nitrogen (NH4

+-N), nitric nitrogen (NO3
--N), and soil organic matter (SOM) could not be estimated using MLSR

or PLSR calibration models. These outcomes will provide the theoretical basis and technical support for estima-
tions of soil element content using visible/near-infrared spectra. Although they were shown to be useful in
apple orchards of the Jiaodong peninsula, these models and methods should be further tested in soil samples
from other regions and countries to prove their validity.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

It is difficult to measure elements in soil. Traditional determination
methods cannot meet the need for rapid and timely surveys, despite
their precision, because they are time-consuming and difficult. The de-
velopment of rapid and economical soil monitoring methods for mea-
suring soil element contents is required for soil fertility diagnosis and
precision farming. In recent years, several spectral technologies have
been developed (Ben-Dor et al., 1997; Reeves et al., 2000; Sorensen
and Dalsgaard, 2005; Sudduth and Hummel, 1993), using portable
one Research, Chinese Academy

ic.ac.cn (X. Liu).
spectrometers (Barnes et al., 2003) or hyperspectral remote sensors
(Gomez et al., 2008). Models for estimating soil elemental contents
using visible/near-infrared (VIS–NIR) spectra benefit from interactions
within soil element contents and soil reflectance (Gaffey et al., 1993).
The models offer high prediction accuracy and explain more than 80%
of the variability (Chang and Laird, 2002; McCarty et al., 2002).

Factors that influence the reflectance of soil include soil moisture,
particle size, and mineral composition, especially the presence of iron
(Bowers and Hanks, 1965; Gaffey et al., 1993; Lobell and Asner, 2002;
McCarty et al., 2002). Pre-processing transformations have been applied
in previous studies to transform soil spectral data and remove signal
noise as well as, to accentuate features and to prepare the data for use
in quantitative estimation models (Dunn et al., 2002; Kooistra et al.,
2003; McCarty et al., 2002). Common pre-processing transformations
include smoothing, averaging, normalization, scatter correction,
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baseline correction, and derivative algorithms. The measured diffuse
reflectance spectra (R) are generally transformed to absorbance (loga-
rithm of the reciprocal of reflectance, logR−1) to study the linearization
between the spectra and concentration (Stenberg et al., 2010).

The first derivative transformation (DR) rapidly identifies spectral
characteristic positions of inflection includingmaximum andminimum
values. For example, Chang and Laird (2002) used the partial least
square (PLSR) method to estimate total soil carbon, based on the first
derivative and smoothing techniques. Dunn et al. (2002) developed a
prediction model for soil organic carbon using the PLSR method with
the first derivative spectra in the 400–2500 nm region.

Several calibration techniques based on VIS–NIR spectra have been
used in the development of models to estimate soil properties. Consid-
ering the advantage of avoiding collinearity, MLSR has been used to de-
velop models that estimate soil properties (Sullivan et al., 2005; Zheng,
2010; B.P. Liu et al., 2007; H.J. Liu et al., 2007; Krishnan et al., 1980). Sim-
ilarly, a partial least square regression (PLSR) model has also been suc-
cessfully constructed to avoid collinearity (Van-Waes et al., 2005; Xu
and Xie, 2012; Zhang, 2010; Zhang et al., 2011).

However, there are some problems with the aforementioned
methods for realistic applications. The MLSR and PLSR models are com-
monly developed with a wide range of spectral bandwidth to obtain
high prediction accuracy. It is unclear whether the elements in soil can
be predicted via MLSR or PLSR methods. These methods are based on
the characteristic spectral absorption of soil elements. It also uses corre-
lations between the soil element and soil constituents, such as iron ox-
ides and clay minerals (Bartholomeus et al., 2008). To overcome these
disadvantages and to improve soil element content prediction via spec-
tral analysis, some studies have selected sensitive wavebands related to
soil element contents and have developed spectral index method
models (Bartholomeus et al., 2008; Lu et al., 2007; Sha et al., 2003).
For instance, Galvão and Vitorello (1998) and Bartholomeus et al.
(2008) developed spectral indices (RI, ratio index) for estimating SOM
content based on the absorbed apex. These types of models can effec-
tively solve the transferability among various remote sensors based on
specified spectral waveband information.

The objectives of the study were: (1) to explore the characteristic
spectral bands of R, logR−1, and DR and develop sensitive waveband
combinations for estimating soil element contents based onfive spectral
indices using SI (sum index), DI (difference index), PI (product index),
RI (ratio index), and NDI (normalized difference index); (2) to develop
calibration models to estimate soil element contents using MLSR and
PLSR modeling methods based on sensitive waveband combinations of
soil element contents; and (3) to compare the performance of published
indices and these models for soil element estimation.
Fig. 1. Distribution of study
2. Material and methods

2.1. Study areas

The study area was Qixia County, which is located on the Jiaodong
peninsula in Shandong province (37°05′–37°32′N, and 120°15′–
121°33′E) (Fig. 1). This region is under a warm temperate monsoon
type continental climate with mean annual rainfall of 664 mm; the
mean annual temperature is 11.6 °C. The annual sunshine duration is
2631 h. The climate has four distinctive seasons with no severe cold in
winter and no heat in summer. Its terrain is composed of gently hilly
mountains mostly covered with brown loam soil that is slightly acidic,
rich in mineral elements, and with good permeability. The unique geo-
graphical location and the superior climate soil conditions are suitable
for the growth of apples. Qixia is an apple-growing region around the
Bohai Gulf. It is an apple advantage area designated by the Ministry of
Agriculture. Qixia is described as the first apple city of China. It boasts
of pollution-free apple production and has been honored as the apple
city (Zhu et al., 2009).

2.2. Field soil samples

Soil samples distributed in the soil layers at 20–40 cm depth were
gathered in April 2009. Before sampling, the natural grass surfaces
were removed. Each sample was mixed with multiple nearby samples
and placed in a numbered polymer bag. Dry soil blocks were cracked
after being air-dried. Intrusive bodies such as the roots of the plants
and stone were removed roughly with grinding and sieving in the
final steps. Eight soil elements were studied (The Committee of Agro-
chemistry of the Chinese Society of Soil Science, 1983). Soil organic
matter (SOM) was measured by the K2Cr2O7 oxidation method. An ele-
mental analyzer (Elementar Vario Micro, Germany) was implemented
to measure total nitrogen (TN) content. The NH4

+-N and NO3
--N con-

tents were given by sequence flow analyzer (San++ SKALAR,
Netherlands). Available phosphorus (A-P)wasdetermined bymolybde-
num blue spectrophotometry. Available potassium (A-K) was deter-
mined by flame atomic absorption spectrometry. Concentrations of
arsenic (As) and mercury (Hg) were determined by Agilent 7500 ICP-
MS (Inductively coupled plasma mass spectrometry) after being
digested by aqua regia. Elemental analyses of the sampling sites are
showed in Table 1. The dataset (n = 105) was randomly divided into
53 samples (50%) for model development and 52 samples (50%) for
model validation. The statistical values of the soil element contents for
the calibration soil samples and the validation samples showed that
the soil element contents had a larger range. Selection of calibration
objects collection plots.



Table 1
Basic statistics for soil element contents.

N Min Max Mean SD

Total Calibration Total Calibration Total Calibration Total Calibration Total Calibration

A-P (mg/kg) 105 53 2.15 4.36 337.52 337.52 75.62 95.61 64.49 61.09
A-K (mg/kg) 105 53 25.89 25.89 6600.24 1003.14 339.17 238.02 704.80 176.87
NH4

+-N (mg/kg) 105 53 0.45 1.26 110.99 95.40 14.28 11.10 24.73 16.41
NO3

--N (mg/kg) 105 53 1.32 2.42 126.56 126.56 16.04 23.24 20.68 18.16
TN (%) 105 53 0.06 0.06 0.39 0.25 0.15 0.14 0.058 0.04
SOM (%) 105 53 0.48 0.48 2.13 2.13 0.97 1.01 0.30 0.16
As (mg/kg) 105 53 2.79 5.03 20.93 19.77 10.59 10.50 3.23 3.09
Hg (mg/kg) 105 53 0.01 0.03 1.02 0.85 0.12 0.11 0.13 0.11
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samples was used for modeling because the SD of the calibration sam-
ples was lower than that of total samples.

2.3. Measurement and preprocessing of soil visible/near-infrared spectra

Reflectance spectra of soil samples were measured with an ASD
Field-Spec FR2500 Spectra-radiometer (Analytical Spectral Devices
Inc., Boulder, CO, USA) with a spectral range of 350–2500 nm
(Hatchell, 1999). A spectrum reflectance panel with 99% (Lab-sphere,
Inc., North Sutton, NH, USA) was utilized as a reference standard to ad-
just and optimize the spectrometer for incoming irradiation. As long as
the visible/near-infrared spectrum of one soil sample was measured,
the optimization procedure occurred. Soils were scanned from below
using a high intensity source probe (Analytical Spectral Devices Inc.,
Boulder, CO, USA). The sampling interval was 1.4 nm at 350–1050 nm
and 2 nm at 1000–2500 nm. The spectral resolution was 3 nm at 350–
1050nmand 10 nmat 1000–2500 nm. Themeasurement conditions in-
cluded the probe view angle (25°), light incident angle (45°), light
source distance (30 cm) and probe distance (15 cm). The soil spectral
curves of the four directions were gained by rotating the sample dishes
three times 90° at a time to reduce the influence of the soil sample spec-
tral anisotropy when measuring. Savitzky–Golay smoothing was used
to reduce the signal noise. The logR−1 and DR at each waveband were
computed to remove the baseline effects (Ben-Dor et al., 1997;
Duckworth, 1998) and to strengthen the spectral features (Lu et al.,
2007; Schlerf et al., 2010)(Fig. 2). The performance of R, logR−1, and
DR were compared, and the characteristic spectral wavebands signifi-
cantly related to soil element contents were explored based on correla-
tion analysis.

2.4. Spectral indices and estimation models

Spectra indices as SI (Eq. (1)), DI (Eq. (2)), PI (Eq. (3)), RI (Eq. (4)),
and NDI (Eq. (5)) were calculated based on characteristic spectral
wavebands of R, logR−1, and DR. The parameters were then correlated
with soil elemental contents to select the best spectral index for esti-
mating the soil elemental contents where Ri and Rj are the reflectance
Fig. 2.Mean spectra of (R)(a), logR−1(b), and DR
at i nm(referencewavelength) and jnm(effectivewavelength), respec-
tively. A computer program based on MATLAB 6.0 software (the
MathWorks, Inc., Natick, MA) was developed to assist with analyses.
Sensitive waveband combinations significantly related to soil element
contents were extracted.

SI i; jð Þ ¼ Ri þ Rj
� � ð1Þ

DI i; jð Þ ¼ Ri−Rj
� � ð2Þ

PI i; jð Þ ¼ Ri � Rj
� � ð3Þ

RI i; jð Þ ¼ Ri=Rj
� � ð4Þ

NDI i; jð Þ ¼ Ri−Rj
� �

= Ri þ Rj
� �

: ð5Þ

In addition, the MLSR and PLSR regression methods (Geladi and
Kowalski, 1986)were used to establish the relationship between soil el-
ement contents and spectra of SI, DI, PI, RI, and NDI. SPSS Version 17.0
for Windows (Statistical Package for the Social Sciences Inc., Chicago,
USA) was used for statistical analysis. The coefficients of determination
(R2), rootmean squared error (RMSE), and relative prediction deviation
(RPD)were used to evaluate the models' performance. The ratio of per-
formance to deviation (RPD),whichwas defined as the ratio of standard
deviation (SD) to RMSE, was employed as a sign of model stability
(Nduwamungu et al., 2009). Chang et al. (2001) defined 3 categories
of models according to the RPD values: i) model in category A
(RPD N 2) accurately predicts a given property; ii) model in category B
(1.4 b RPD b 2.0) is an intermediate class; and iii) model in category C
(RPD b 1.4) has no prediction ability.

3. Results

3.1. Soil visible/near-infrared spectra

The mean reflectance spectral data of calibration samples and vali-
dation samples (Fig. 2a) showed that the shapes of reflectance were
(c) for calibration and verification samples.



Table 2
Correlations (r) between spectral formats (R, logR−1, and DR) and soil element contents.

R logR−1 DR

/rmin/ /rmax/ n /rmin/ /rmax/ n /rmin/ /rmax/ n

A-P 0 0.15 0 0 0.16 0 0 0.29⁎ 85
A-K 0 0.17 0 0 0.18 0 0 0.31⁎ 70
NH4

+-N 0 0.16 0 0 0.15 0 0 0.32⁎ 98
NO3

--N 0 0.19 0 0 0.19 0 0 0.38⁎ 99
TN 0 0.2 0 0 0.19 0 0 0.34⁎ 112
SOM 0 0.18 0 0 0.19 0 0 0.34⁎ 99
As 0 0.31⁎ 30 0 0.31⁎ 25 0 0.29⁎ 99
Hg 0 0.13 0 0 0.12 0 0 0.33⁎ 91
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similar to those of soil samples in other studies (Huang and Liu, 1995;
Gomez et al., 2008; Zornoza et al., 2008). The reflectance profiles rose
and shifted quickly toward the long-waveband direction from 350 nm
to 760 nm. The absorption band at 450–480 nm and the reflection
peak at 520–580 nm could be attributed to the existence of hematite, li-
monite, and goethite in the soil (Zhao, 2003). The reflectance changed
gradually in the spectral range of 600–680 nm. The reflectance in-
creased slightly in the 850–2350 nm range. The spectral curve had
three absorption features at 1380, 1940, and 2250 nm, which indicate
the presence of hydroxide (OH) in free water (1400 and 1900) and
the Al–OH lattice in clay minerals (2200 nm) (Ben-Dor et al., 2002;
Viscarra Rossel et al., 2006; Summers et al., 2011).
n = the number of sensitive wavebands.
⁎ Significant correlation (r N 0.195, p b 0.05).
3.2. Relationship of soil element contents to spectral indices

Relationship of soil element contents to spectral formats as R,
logR−1, and DR were calculated in the entire 350–2500 nm spectral re-
gion (Fig. 3, Table 2). Significant correlations between R and As occurred
at 30wavebands (r N 0.195, p b 0.05). No significant correlationwas ob-
served between R and any other soil element content. Similarly, signif-
icant correlations between logR−1 andAs occurred at 25wavebands. No
significant correlation was observed between logR−1 and any other soil
element content. However, significant correlations between DR and soil
element contents occurred atmore wavebands than at R or logR−1. The
correlation coefficients (r) were calculated between SI, DI, PI, RI, and
NDI and soil element contents including all possible pair combinations
of wavebands that were significantly related to soil element contents
(Fig.4, Table 3).
3.3. Performance of multiple linear stepwise regression and partial least
square regression

Coefficients of determination (R2) were constructed usingMLSR and
PLSR regression for SI, DI, PI, RI, and NDI against soil element contents
including sensitive waveband combinations that were significantly re-
lated to soil element contents. The numbers of sensitivewaveband com-
binations used in the regression analysis are listed in Table 3. However,
no valid values for RI or NDI for DR have been gained as a result of the
existence of zero (Table 3). Thus the MLSR and PLSR regression of RI
and NDI against soil element contents was not performed. PLSR regres-
sion models of SI calculated based on R and logR−1 against As content
performed poorly (R2 = 0.375 and 0.232, respectively). The PLSR re-
gression models of PI calculated based on R against As content still per-
formed poorly (R2= 0.252). In addition, theMLSR regressionmodels of
SI calculated based on the two spectral formats (R or logR−1), and PI cal-
culated based on R against As content were not useful. The information
above indicated that R and logR−1 performed poorly in accentuating the
features and in preparing the data for use in quantitative estimation
models.
Fig. 3. Correlations (r) between three spectral format
Fig. 5 showed the best results of MLSR and PLSR regression of SI, DI,
and PI calculated based on DR against soil element contents. The opti-
mal numbers of latent variables for PLSR calibration models used to es-
timate the soil element contents were cross-validated with SIMCA-P
11.5 (Table 4). The use of MLSR and PLSR algorithms to the three spec-
tral indices based on DR resulted in the calibration models listed in
Table 5. The results showed that the MLSR and PLSR calibration models
based on different spectral indices exhibited significant differences. The
performances of the MLSR calibration models with selected sensitive
waveband combinations were better than that of PLSR calibration
models. The MLSR and PLSR calibration models based on PI mainly per-
formed better than those models based on SI or DI.

3.4. Testing soil element contents via estimation models

To test whether the calibration models described above were reli-
able and applicable to the estimation of soil elemental contents, inde-
pendent datasets of 52 soil samples were used to validate their
respective performances (Fig. 6). The performance of MLSR and PLSR
models were evaluated with R2, RMSE, and RPD when calibration sam-
ples and validation samples were concurrently considered. The results
showed that MLSR and PLSR calibration models based on SI or DI per-
formedpoorly in estimating soil element contents. TheMLSR calibration
model based on PI performed poorly in estimating the A-P content
(R2 = 0.63, RMSE = 42.09, RPD = 1.62). However, MLSR calibration
models based on PI performed well in estimating A-K contents (R2 =
0.97, RMSE=144.56, RPD=5.75); theMLSR validationmodel was sta-
ble (R2= 0.95, RMSE= 111.29, RPD= 4.26). The A-K content could be
evaluated well using MLSR calibration models developed with PI. As to
the MLSR calibration models based on PI in estimating TN (R2 = 0.91,
RMSE = 0.01, RPD = 3.28), As (R2 = 0.79, RMSE = 1.43, RPD = 2.14)
and Hg (R2 = 0.99, RMSE = 0.01, RPD = 10.34), the MLSR validation
models were also stable with the R2 values of 0.96, 0.78, and 0.99. The
RMSE were 0.01, 1.62, and 0.01, and the RPD were 5.16, 2.08, and
10.78, respectively. The results indicated that the contents of A-K, TN,
s (R, logR−1, and DR) and soil element contents.



Fig. 4. Correlations of soil element contents to three spectral indices (SI, DI, and PI) calculated based on sensitive wavebands.
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Fig. 4 (continued).
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As, and Hg could be estimated well using MLSR calibration models de-
veloped with PI. Similarly, the PLSR calibration model based on PI per-
formed well in estimating the contents of TN (R2 = 0.77, RMSE =
0.02, RPD = 2.06), As (R2 = 0.85, RMSE = 1.19, RPD = 2.56), and Hg
(R2 = 0.98, RMSE = 0.02, RPD = 7.69). The PLSR validation models
remained stable with R2 values of 0.92, 0.85, and 0.98. The RMSE values
were 0.02, 1.31, and 0.02, and the RPD values were 3.56, 2.57, and 6.65,
respectively. The TN, As, and Hg could be estimated well using PLSR cal-
ibration models developed with PI. The performance of the MLSR cali-
bration model developed with PI was better than the PLSR calibration
model in estimating TN content (R2 = 0.91 and 0.77, respectively).
Table 3
Correlations (r) between spectral indices and soil element contents.

SI DI R

/rmin/ /rmax/ n /rmin/ /rmax/ n /

R As 0 0.32⁎ 148 0 0.19 0 0
logR−1 As 0 0.28⁎ 15 0 0.28⁎ 1 0
DR A-P 0 0.41⁎ 187 0 0.41⁎ 198 −

A-K 0 0.43⁎ 148 0 0.45⁎ 157 −
NH4

+-N 0 0.46⁎ 301 0 0.43⁎ 294 −
NO3

--N 0 0.48⁎ 307 0 0.48⁎ 323 −
TN 0 0.46⁎ 490 0 0.45⁎ 500 −
SOM 0 0.45⁎ 285 0 0.45⁎ 302 −
As 0 0.41⁎ 260 0 0.41⁎ 270 −
Hg 0 0.44⁎ 294 0 0.44⁎ 306 −

n = the number of sensitive waveband combinations. – is null value.
⁎ Significant correlation (r N 0.195, p b 0.05).
The performance of the PLSR calibration model developed with PI was
better than the MLSR calibration models in estimating As content
(R2 = 0.85 and 0.79, respectively). The performance of the MLSR
calibration model developed with PI was only slightly better than that
of the PLSR calibration models in estimating Hg content (R2 = 0.99
and 0.98, respectively). Moreover, the MLSR validation model devel-
oped with PI performed well in estimating A-K content (R2 = 0.95,
RPD = 4.26), but the PLSR validation model performed poorly (R2 =
0.71, RPD = 1.59). Overall, the performances of the MLSR calibration
models developedwith PIwere better than those of the PLSR calibration
models developed with PI except for As. However, the A-P, NH4

+-N.
I PI NDI

rmin/ /rmax/ n /rmin/ /rmax/ n /rmin/ /rmax/ n

0.18 0 0 0.33⁎ 188 0 0.19 0
0.28⁎ 1 0 0.28⁎ 1 0 0.28⁎ 1
− − 0 0.40⁎ 60 − − −
− − 0 0.66⁎ 111 − − −
− − 0 0.50⁎ 467 − − −
− − 0 0.50⁎ 166 − − −
− − 0 0.55⁎ 434 − − −
− − 0 0.42⁎ 158 − − −
− − 0 0.40⁎ 166 − − −
− − 0 0.60⁎ 278 − − −



Fig. 5. Comparison of observed and predicted contents of A-K, TN, As, and Hg based on MLSR and PLSR calibration models.
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NO3
--N and SOM could not be estimated usingMLSR or PLSR calibration

models.
4. Discussion

Soil reflectance spectral characteristics are closely related to the
physical and chemical properties. Therefore, differences in spectral
characteristics are attributable to the physical and chemical properties
Table 4
Cross-validation results for the PLSmodels of soil element contents with different spectral
indices calculated based on DR.

Number of
factors

R2 RMSE Number of
factors

R2 RMSE

A-P SI 2 0.67 40.06 TN SI 3 0.63 0.03
DI 1 0.57 45.47 DI 5 0.60 0.03
PI 1 0.63 44.71 PI 4 0.77 0.02

A-K SI 1 0.73 446.30 SOM SI 2 0.80 0.17
DI 1 0.72 449.49 DI 4 0.79 0.17
PI 1 0.94 203.35 PI 2 0.82 0.16

NH4
+-N SI 2 0.45 13.22 As SI 1 0.71 1.79

DI 5 0.53 12.58 DI 2 0.69 1.76
PI 3 0.67 10.16 PI 5 0.85 1.19

NO3
--N SI 1 0.70 14.63 Hg SI 2 0.73 0.06

DI 4 0.79 11.77 DI 3 0.75 0.06
PI 5 0.93 6.75 PI 4 0.98 0.02
of different soil types (Xu, 2000). The technical analysis of soil spectra
in the laboratory is popular because it is easily controlled and per-
formed. Many studies have concentrated on sensitive spectral
wavebands and the relationship with soil elements (Dematte et al.,
2007; Lu et al., 2007). For instance, Lu et al. (2007) found that the
SOMof black soil had a negative correlationwith the reflectance spectra
in the 545–738 nm range as well as the first derivative spectra in the
481–598 nm range. They also found a positive correlation with the
first derivative spectra in the 816–932 nm and 1039–1415 nm ranges.
The results of this study also showed that the first derivative spectral
formats correlated well with soil element contents. These results are
consistent with previous studies and suggest that the original spectral
reflectance of the first derivative spectra could be the most sensitive
for evaluating the soil element contents.

Selected spectral indices have been proposed to estimate soil nutri-
ent parameters. He et al. (2006) developed a soil iron oxide index
SFOI= (LgRed− LgBlue) / (LgRed + LgBlue) for estimating iron oxide con-
tent by analyzing the spectral absorption characteristics of iron oxide.
Here red and blue were averaged values of reflectance in the 700–
760 nm and 450–510 nm ranges, respectively. An organic matter iden-
tification index (OII, R(507–516)/R(450–750)) and the normalized first de-
rivative spectra were also proposed for the retrieval of SOM content in
black soil from northeast China (B.P. Liu et al., 2007; H.J. Liu et al.,
2007; He et al., 2007). Thus, the spectral index technique is a potential
method to evaluate soil nutrient status and was used here to analyze
the correlations of the reflectance spectra and the first derivative spec-
tra with soil elemental analysis.



Table 5
Prediction results for the MLR and PLS models of soil element contents with different spectral indices.

SI DI PI

R2 RMSE RPD R2 RMSE RPD R2 RMSE RPD

A-P Calibration MLR 0.67 30.64 1.72⁎ 0.67 39.94 1.71⁎ 0.63 42.09 1.62⁎

PLS 0.67 40.06 1.70⁎ 0.57 45.47 1.50⁎ 0.63 44.71 1.53⁎

Validation MLR 0.44 40.26 1.29 0.51 38.06 1.37 0.48 39.09 1.33
PLS 0.49 38.92 1.33 0.51 37.67 1.38 0.39 44.32 1.17

A-K Calibration MLR 0.75 427.89 1.94⁎ 0.72 446.63 1.86⁎ 0.97 144.56 5.75⁎⁎

PLS 0.73 446.30 1.86⁎ 0.72 449.49 1.85⁎ 0.94 203.35 4.09⁎⁎

Validation MLR 0.51 360.65 1.32 0.58 328.51 1.45⁎ 0.95 111.29 4.26⁎⁎

PLS 0.37 413.07 1.15 0.42 388.00 1.22 0.71 298.36 1.59⁎

NH4
+-N Calibration MLR 0.45 12.99 1.25 0.46 13.48 1.21 0.67 9.88 1.65⁎

PLS 0.45 13.22 1.23 0.53 12.58 1.29 0.67 10.16 1.60⁎

Validation MLR 0.74 16.14 1.89⁎ 0.78 15.01 2.03⁎⁎ 0.92 8.75 3.49⁎⁎

PLS 0.78 14.85 2.06⁎⁎ 0.81 14.27 2.14⁎⁎ 0.92 8.97 3.40⁎⁎

NO3
--N Calibration MLR 0.77 12.35 2.02⁎⁎ 0.77 12.57 1.98⁎ 0.89 8.43 2.96⁎⁎

PLS 0.70 14.63 1.70⁎ 0.79 11.77 2.12⁎⁎ 0.93 6.75 3.69⁎⁎

Validation MLR 0.36 10.37 1.04 0.33 10.52 1.02 0.53 7.86 1.37
PLS 0.30 11.29 0.95 0.39 9.66 1.11 0.73 5.69 1.89⁎

TN Calibration MLR 0.59 0.03 1.48⁎ 0.46 0.03 1.28 0.91 0.01 3.28⁎⁎

PLS 0.63 0.03 1.59⁎ 0.60 0.03 1.50⁎ 0.77 0.02 2.06⁎⁎

Validation MLR 0.90 0.03 2.31⁎⁎ 0.89 0.03 2.27⁎ 0.96 0.01 5.16⁎⁎

PLS 0.90 0.03 2.30⁎⁎ 0.91 0.03 2.54⁎⁎ 0.92 0.02 3.56⁎⁎

SOM Calibration MLR 0.79 0.17 2.11⁎⁎ 0.78 0.17 2.08⁎⁎ 0.90 0.11 3.10⁎⁎

PLS 0.80 0.17 2.13⁎⁎ 0.79 0.17 2.09⁎⁎ 0.82 0.16 2.26⁎⁎

Validation MLR 0.65 0.14 1.61⁎ 0.59 0.15 1.47⁎ 0.75 0.12 1.85⁎

PLS 0.64 0.15 1.52⁎ 0.79 0.12 1.85⁎ 0.61 0.15 1.49⁎

As Calibration MLR 0.64 1.90 1.61⁎ 0.58 2.04 1.50⁎ 0.79 1.43 2.14⁎⁎

PLS 0.71 1.79 1.71⁎ 0.69 1.76 1.73⁎ 0.85 1.19 2.56⁎⁎

Validation MLR 0.68 1.97 1.71⁎ 0.69 1.93 1.74⁎ 0.78 1.62 2.08⁎⁎

PLS 0.60 2.23 1.51⁎ 0.69 1.94 1.73⁎ 0.85 1.31 2.57⁎⁎

Hg Calibration MLR 0.66 0.07 1.67⁎ 0.66 0.07 1.68⁎ 0.99 0.01 10.34⁎⁎

PLS 0.73 0.06 1.87⁎ 0.75 0.06 1.96⁎ 0.98 0.02 7.69⁎⁎

Validation MLR 0.74 0.07 1.92⁎ 0.72 0.08 1.86⁎ 0.99 0.01 10.78⁎⁎

PLS 0.76 0.07 2.00⁎⁎ 0.76 0.07 2.01⁎⁎ 0.98 0.02 6.65⁎⁎

⁎ Model in category B.
⁎⁎ Model in category A.
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The MLSR and PLSR methods were also used to develop the calibra-
tion models for estimating soil element contents. The results showed
that for both methods, the accuracy of prediction was improved when
sensitive spectral waveband regions were used to calibrate the model.
This suggests that these prediction models based on MLSR or PLSR
methods were based more directly upon the characteristic spectral ab-
sorption of soil element contents than models calibrated with the full
spectrum wavebands. In addition, the accuracies of the MLSR and
PLSR models are typically influenced by soil texture and color (Dalal
and Henry, 1986; Krishnan et al., 1980). A good pre-processing tech-
nique can be usedwith spectral data to improve the prediction accuracy
(Bartholomeus et al., 2008; Kooistra et al., 2003). For instance, com-
pared with published results (R2 = 0.86, 0.72, 0.86, 0.90; Daniel et al.,
2003;McCarty et al., 2002; Viscarra Rossel et al., 2006), the SOMcalibra-
tion models developed here may potentially be more reliable and pre-
cise. This is because of the selection of the pre-processing method of
DR and the application of sensitive waveband combinations for the
model calibration rather than full spectrum wavebands (400–
2500 nm).

A comparison of the performance of calibration models using MLSR
and PLSR techniques indicates that MLSR is better than PLSR. In addi-
tion, DR performed better than logR−1 in eliminating the interfering
factors of soil particle size and spectral noise and was suitable for the
ASD instrumentation used in this study. PI performed better than SI
and DI in developing sensitive band combinations for estimating soil el-
ement contents. Thus, the results are repeatable when similar instru-
ments are used, with the same measurement configuration and
the same pre-processing methodology. However, these models and
methods should be tested further with soils from other regions and
countries to confirm their validity. In addition, MLSR and PLSR are
based on linear algorithms modeling spectral responses, but soil
visible/near-infrared spectra may be nonlinear (Fuller and Griffiths,
1978). Further study should be conducted to estimate soil element con-
tents based on nonlinear regression technology techniques.

5. Conclusions

Based on comprehensive analysis of the relationship between soil
element contents and corresponding reflectance spectra formats
(R, logR−1 and DR), MLSR and PLSR were applied to estimate soil ele-
ment contents based on five spectral indices (SI, DI, PI, RI, and NDI).
The DR performed better than logR−1 in eliminating the interfering fac-
tors of soil particle size and spectral noise and was suitable for the ASD
instrumentation used in this study. MLSR and PLSR calibration models
based on PI performed better than those based on SI or DI. MLSR per-
formed better than PLSR in estimating soil element contents. The con-
tents of TN, As, and Hg could be estimated very well using MLSR and
PLSR calibration models developed with PI. The MLSR calibration
model alone developed with PI performed well in estimating A-K con-
tent. However, contents of A-P, NH4

+-N, NO3
--N, and SOM could not be

estimated using MLSR or PLSR calibration models. These outcomes
will provide the theoretical basis and technical support for estimations
of soil element contents using visible/near-infrared spectra. These esti-
mation models must undergo further testing and optimization prior to
wider application for soil ecosystem observation.
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