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Accurate reconstruction of past sea surface temperature (SST) is important for the understanding of past climate
and its variations. Recently, the TEX86 indicator (TetraEther indeX of tetraethers consisting of 86 carbon atoms),
based on glycerol dialkyl glycerol tetraethers (GDGTs) has been developed into a promising proxy for SST recon-
struction. In this study, we investigated the distribution of GDGTs in surficial sea bottom sediments from coastal
and open marine settings around China between 18°N and 38°N in water depth of either b100 or N1000 m.
As the distribution patterns of GDGTs reflect their biological sources and their respective habitats these can be iden-
tified from the sediment samples investigated. The distributions of branched GDGTs (brGDGTs) in the Yellow Sea
(YS)was found to be similar to that of the lower YellowRiver basin indicating that the brGDGTs in the YS originated
from terrestrial soil. While the variability of the cyclisation ratio of branched tetraethers (CBT)-derived pH values in
the Pearl River estuary (PRE) suggested that brGDGTs might also be produced in situ in coastal sediments or in the
water column. In the shallow areas (water depth b100 m, the YS, East China Sea and PRE) TEX86

H -based SST (SST86H )
was overestimated or underestimated when compared with mean annual SSTsatellite, most likely caused by season-
ality or overprint by a cold-biased terrestrial signal. In the South China Sea (SCS), at water depth N1000 m, the
SST86H matched well the mean annual SST determined by satellite, indicating the applicability of the TEX86

H tem-
peratures for paleoclimate investigations in these study areas and, potentially, in similar settings of deep water.
These findings provide the basis for application of branched/isoprenoid index (BIT) and TEX86 as indicators for
temperature and paleotemperature in coastal and open marine environments around China.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Accurate reconstruction of sea surface temperature (SST) is impor-
tant for understanding past climate and its variation. Therefore, large
efforts have been made to determine the variations in SST throughout
the geological history (IPCC, 2007) using indicators such as δ18O and
Mg/Ca ratios of planktonic foraminifera and indicative lipids. Lipid-
based proxy indicators for SST include U37

K -indices, a ratio index of long-
chain unsaturated alkenone (Brassell et al., 1986), and TEX86 proxy and
its derivatives, based on glycerol dialkyl glycerol tetraethers (GDGTs)
from Archaea (e.g. Schouten et al., 2002; Kim et al., 2008, 2010).

GDGTs are membrane lipids of Archaea and bacteria (Sinninghe
Damsté et al., 2000; Weijers et al., 2006a) and exist in both isoprenoid
and branched forms, derived from different sources, which are still
being investigated. Isoprenoid GDGTs (isoGDGTs) are produced by at
ghts reserved.
least two groups of Archaea, Thaumarchaeota (formerly marine group
I Crenarchaeota) and Euryarchaeota, and usually have acyclic or ring-
containing biphytanyl chains (De Rosa and Gambacorta, 1988;
Brochier-Armanet et al., 2008; Spang et al., 2010, and references there-
in). One isoGDGT, thaumarchaeol (formerly crenarchaeol), and its
regio-isomer, have been postulated to be specific to Thaumarchaeota
(Brochier-Armanet et al., 2008) andwas originally considered to be syn-
thesized only by nonthermophilic marine members of this phylum
(SinningheDamsté et al., 2002). However, it was subsequently detected
in a culture of thermophilic nitrifying Thaumarchaeota (De La Torre
et al., 2008), in microbial mats in terrigenous geothermal hot springs
(Pearson et al., 2004; Zhang et al., 2006; Schouten et al., 2007) and in
soils adjacent to terrigenous geothermal hot springs (Pitcher et al.,
2009). The TEX86 proxy was proposed by Schouten et al. (2002),
for the estimation of past SST by quantifying the average number of
cyclopentane rings in tetraethers with 86 carbon atoms in sediments.
It appears not to be dependent on salinity or nutrient concentration
(Wuchter et al., 2004, 2005). The proxy TEX86 has been successfully
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Fig. 1.Map of the study area showing sample locations indicated by circles (●).
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applied to the calculation of paleotemperature histories of aquatic sys-
tems in sediments from oceans and large lakes (e.g. Powers et al.,
2004, 2010). Kim et al. (2010) modified the TEX86-SST calibration
model by distinguishing TEX86

H -SST and TEX86
L -SST calibration models

for SST above 15 °C (H) and SST below 15 °C (L), respectively.
Branched GDGTs (brGDGTs) are generally attributed to soil bacteria

(Sinninghe Damsté et al., 2000; Weijers et al., 2006b) possibly
Acidobacteria (Sinninghe Damsté et al., 2011). A GDGT proxy, the BIT
(branched/isoprenoid) index, was proposed and applied to determine
the relative inputs of soil organic matter (OM) to aquatic environments
(Hopmans and Weijers, 2004; Walsh et al., 2008). The cyclisation ratio
of branched tetraethers (CBT), basedon the structures of brGDGTs varying
in the amount of cyclopentanemoieties,was found to correlatewithmea-
sured soil pH (Weijers et al., 2007). However, recent studies suggest that
brGDGTs have diverse origins. For example, brGDGTs can be the result of
in situ production in lacustrine sediments (e.g. Tierney et al., 2010) in ad-
dition to the soil bacterial source. Schouten et al. (2007) found brGDGTs
also in sediments andmicrobial mats in hot springs. Hu et al. (2012) de-
tected brGDGTs in pelagic sediments in locationswhere the contribution
from soils can be discounted. These findings indicate that brGDGTs can
be produced not only in soils but also in aquatic environments.

In recent years, the distribution of GDGT-proxies has been increas-
ingly used in studies of China'smarginal seas. Several studies investigat-
ed the distributions of GDGTs in the sediments and water in the South
China Sea (SCS) (e.g. Wei et al., 2011; Jia et al., 2012), and discovered
that TEX86-based SSTs temperatures were overall lower than the mea-
sured surface water temperatures. It seems therefore that TEX86 reflects
a deeper and cooler subsurface temperature in the SCS (Jia et al., 2012).
Thus, it is proposed that the temperature difference between the U37

K

and TEX86 reflects changes of depth of the mixed layer in the SCS (Jia
et al., 2012; Li et al., 2013). Moreover, Ge et al. (2013) and Zhang et al.
(2013) showed that TEX86-derived temperatures were lower than the
mean annual SSTs in the inner shelf areas of the SCS, and deduced that
the TEX86-derived temperatures mainly reflected the winter SSTs in the
coastal region of the SCS. However, Shintani et al. (2011) found that
the TEX86 temperature corresponds to the SSTs in warmer seasons in
the open northern SCS.While for the East China Sea, TEX86-derived tem-
perature is robust and reflects the annual mean SST (Zhu et al., 2011).
These recent studies show the need and importance of constraining the
GDGT-proxies on regional scales for temperature reconstruction. There-
fore, a systematic study of the distribution of GDGTs and their application
as temperature proxies in the seas around China is necessary.

In this study, we investigated the distribution of GDGTs in surface
sediments from coastal and open marine settings around China be-
tween 18°N and 38°N in water depth of either b100 or N1000 m. The
main goals of this study of surface sediments taken along transects in
various oceanographic settings of coastal and open marine sediments
around Chinawere: 1) to determine the distribution of GDGTs, 2) to de-
termine the relative contribution of their marine and terrestrial sources,
3) to derive temperature estimates, 4) to explore the potential of the ob-
servations and results to decipher other processes and effects. This
study tests the TEX86

H , as temperature indicator in comparison with
SST determined from satellites, and BIT indicator as relative input of ter-
restrial andmarine GDGTs. This study should provide a reference for fu-
ture investigations of records of paleoclimate in sediments from the seas
around China using these proxies.

2. Materials and methods

2.1. Sites and sample collection

The study of the sea off the coast of China was carried out on samples
from the following areas 1) the Yellow Sea (YS), 2) the East China Sea
(ECS), and 3) the adjacent South China Sea (SCS), which includes
the Pearl River estuary (PRE) (Fig. 1). The respective SST data of each
station were retrieved from NODC (Levitus) World Ocean Atlas 1994
(NODC_WOA94) from the Web site of http://www.esrl.noaa.gov/psd/on
a 1° grid resolution and monthly long term mean parameters by
satellite remote sensing. We used average values of the annual mean
climatology SST data to explore the relationships of the distribution of iso-
prenoid GDGTs (calculated as TEX86

H ) with SST measured from satellites,
for the four seasons as follows: spring, March–May; summer, June–
August; autumn, September–November; winter, December–February.

The YS is a semi-enclosed shallow basin (mean water depth 44 m)
with relatively low water exchange with the open ocean. The waters
are strongly influenced by the YS coastal water and the YSwarm current.
The weather in this region is characterized by cold and dry winters and
warm and wet summers, with an annual mean SST of 16 °C. The water
in the ECS is influenced by China's coastal current and Taiwan's warm
current and has amean SST of 22 °C. The SCS is one of the largestmargin-
al seas in the Western Pacific, with an annual mean SST of 23 °C in the
northern coastal area. The Pearl River system discharges into the SCS
via three sub-estuaries: the Lingdingyang,Modaomen, andHuangmaohai
estuaries. The coastal waters in the estuary are strongly influenced by
three water regimes: Pearl River discharge, oceanic water from the SCS,
and coastal water from the South China coastal current (Ying, 1994).

Surface sediment samples were collected with a stainless steel grab
sampler from the coastal and open marine areas around China. Seven-
teen samples were collected in September 2006 in the YS, ECS, SCS,
and ten samples were collected in July 2002 in the Pearl River estuary.
All sediment samples were stored at -18 °C until analysis.

2.2. Extraction and analytical procedures

Sediment sampleswere freeze dried and homogenized in preparation
for lipid extraction by Soxhlet reflux for 48 h using a mixture of dichloro-
methane (DCM) andmethanol (2:1, V/V). The resultingmixturewas cen-
trifuged and the organic phase was separated from the aqueous phase
using a separation funnel after addition of 5% KCl solution. The aqueous
layerwas extractedwithDCM(×2). The collected organic phasewas con-
centrated by rotary evaporation. The total lipid extract was fractionated
into apolar and polar fractions using a column packed with activated
alumina using hexane/DCM (9:1, V/V) and DCM/methanol (1:1, V/V) as
eluents, respectively.

The polar fraction was dried under a stream of N2, redissolved
in hexane/propanol (99:1, V/V) and filtered through a 0.45 μm
polytetrafluoroethylene (PTFE) filter. Lipid analysis was performed
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Table 1
Concentrations of glycerol dialkyl glycerol tetraethers (GDGTs) present in surface sediments, the branched vs. isoprenoid tetraether index (BIT), the cyclisation ratio of branched tetraethers (CBT)-derived pH, the tetraether index of tetraethers
consisting of 86 carbon atoms (TEX86

H )-derived SST (SST86H ) and satellite-derived seasonal temperatures (spring, summer, autumn and winter).

Sample Latitude
(ºN)

Longitude
(ºE)

Depth
(m)

IsoGDGTs
(ng g−1 dw)

BrGDGTs
(ng g−1 dw)

GDGT-0
(ng g−1 dw)

Thaumarchaeol
(ng g−1 dw)

BIT CBT-pH TEX86
H SST86H

(°C)
Spring Summer Autumn Winter SSTsatellite

YS-1 38.76˚N 122.73˚E 53.7 253.9 50.1 91.2 102.7 0.19 9.0 −0.33 16.0 7.9 21.1 18.7 6.1 13.4
YS-2 37.76˚N 123.02˚E 61.6 136.5 38.7 51.6 53.6 0.28 8.5 −0.34 15.3 8.0 21.1 18.8 6.7 13.6
YS-3 36.77˚N 123.30˚E 69.7 73.2 40.9 23.9 30.4 0.42 8.4 −0.29 18.8 8.5 21.4 19.3 7.6 14.2
YS-4 35.73˚N 123.58˚E 84.5 416.6 122.2 150.1 167.7 0.23 9.2 −0.31 17.4 9.1 21.8 19.8 8.5 14.8
YS-5 35.25˚N 123.73˚E 77.0 271.1 57.1 90.8 113.3 0.17 9.1 −0.31 17.4 9.1 21.8 19.8 8.5 14.8
YS-6 34.77˚N 123.84˚E 79.6 150.6 40.6 51.4 61.6 0.25 8.6 −0.33 16.0 10.0 22.3 20.3 9.6 15.6
YS-7 34.18˚N 124.00˚E 80.4 274.7 35.7 87.6 113.3 0.13 8.7 −0.32 16.7 10.6 22.1 20.3 10.2 15.8
YS-8 33.42˚N 124.01˚E 64.6 216.5 31.1 60.4 92.1 0.16 8.3 −0.28 19.4 11.8 22.8 21.1 11.6 16.8
Mean 224.1 52.1 75.9 91.8 0.23 8.7 −0.31 17.1 9.4 21.8 19.7 8.6 14.9
ECS-1 30.15˚N 123.20˚E 60.2 234.0 22.6 51.4 102.2 0.10 8.4 −0.21 24.2 14.8 25.0 23.1 14.5 19.3
ECS-2 28.64˚N 122.39˚E 53.6 463.1 83.9 80.0 212.6 0.19 8.0 −0.23 22.9 17.7 26.5 24.3 16.9 21.3
ECS-3 27.23˚N 121.38˚E 49.3 370.5 62.2 58.2 181.0 0.17 7.9 −0.21 24.2 19.2 27.0 24.7 17.9 22.2
ECS-4 25.83˚N 120.40˚E 58.4 470.5 60.0 86.7 219.9 0.14 7.8 −0.25 21.5 21.7 27.5 25.4 19.6 23.5
ECS-5 24.13˚N 118.46˚E 42.2 78.1 17.4 12.8 38.4 0.21 8.0 −0.26 20.8 22.6 27.5 25.6 20.3 24.0
Mean 323.2 49.2 57.8 150.8 0.16 8.0 −0.23 22.7 19.2 26.7 24.6 17.8 22.1
SCS-1 19.25˚N 114.80˚E 1363 368.8 23.3 66.3 157.5 0.09 7.8 −0.17 27.0 25.9 28.9 27.2 23.6 26.4
SCS-2 18.23˚N 113.68˚E 1302 457.9 34.7 87.87 178.77 0.11 8.1 −0.18 26.3 26.3 29.0 27.4 24.1 26.7
SCS-3 18.28˚N 111.55˚E 1288 415.5 29.9 69.4 178.7 0.10 7.8 −0.16 27.7 26.0 29.0 27.3 23.9 26.6
SCS-4 18.08˚N 110.69˚E 1207 426.0 58.3 59.9 199.6 0.15 7.8 −0.22 23.6 25.9 29.0 27.3 23.8 26.5
Mean 417.1 36.6 70.9 178.6 0.11 7.8 −0.18 26.2 26.0 29.0 27.3 23.8 26.5
A2 21.95˚N 113.45˚E 9 139.7 185.7 26.0 63.0 0.68 7.4 −0.25 21.5 – – – – –

C3 21.96˚N 113.88˚E 25 302.4 84.1 58.2 145.1 0.28 7.4 −0.26 20.8 24.4 28.3 26.4 22.1 25.3
C10 20.83˚N 114.13˚E 85 192.4 32.3 27.0 94.2 0.17 8.0 −0.20 24.9 25.3 28.7 26.9 22.9 25.9
D1 22.01˚N 114.03˚E 16 433.9 144.7 77.8 201.1 0.34 7.2 −0.28 19.4 24.6 28.4 26.5 22.2 25.5
D2 21.97˚N 114.27˚E 29 263.6 91.5 61.4 113.5 0.36 7.4 −0.23 22.9 24.6 28.4 26.5 22.2 25.5
D3 21.80˚N 114.30˚E 39 168.6 64.7 36.1 71.8 0.37 7.5 −0.27 20.1 24.6 28.4 26.5 22.2 25.5
D4 21.62˚N 114.33˚E 46 163.0 55.6 30.2 73.4 0.33 7.6 −0.25 21.5 24.6 28.4 26.5 22.2 25.5
D5 21.45˚N 114.37˚E 59 270.9 77.3 44.9 127.3 0.28 7.7 −0.22 23.6 24.6 28.4 26.5 22.2 25.5
D6 21.30˚N 114.40˚E 67 133.8 43.6 22.6 60.4 0.31 7.8 −0.22 23.6 24.6 28.4 26.5 22.2 25.5
D7 21.12˚N 114.45˚E 79 95.9 25.9 17.3 42.8 0.27 7.9 −0.21 24.2 24.6 28.4 26.5 22.2 25.5
Mean 216.4 80.5 40.2 99.3 0.34 7.6 −0.24 22.2 24.7 28.5 26.6 22.4 25.6
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Fig. 2. Concentrations of branched glycerol dialkyl glycerol tetraethers (brGDGTs) normalized to (a) dryweight and (b) total organic carbon (TOC), anddistributions of (c) the branched vs.
isoprenoid tetraether (BIT) and (d) the cyclization ratio of branched tetraethers (CBT)-derived pH in the surface sediments from the Pearl River estuary.
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using a high-performance liquid chromatography (HPLC)/atmospheric
pressure positive ion chemical ionizationmass spectrometry (APCI-MS)
(Agilent 6410 QQQ LC–MS). The LC–MS was equipped with an
auto-injection system and Agilent Chemstation software. Normal
phase separation was achieved with a Prevail Cyano column
(150 mm × 2.1 mm, 3 μm; Alltech, USA) maintained at 30 °C. The
injection volume was 3 μL and the flow rate was 0.2 mL min−1. The
GDGTs were first eluted isocratically with a mixture of n-hexane
(99%) and n-propanol (1%) for 5 min, followed by a linear gradient to
2% of n-propanol for 45 min. After each injection, the column was
cleaned with a mixture of n-hexane (90%) and n-propanol (10%) for
15 min at 0.2 mL min−1. The conditions for APCI-MS were as follows:
nebulizer pressure 60 psi, vaporizer temperature 300 °C, drying gas
(N2) flow 5 L/min and temperature 200 °C, capillary voltage −2.5 kV,
corona 5 μA. GDGTs were detected by selected ion monitoring (SIM)
of the protonatedmolecules [M+H]+ (dwell time 135 ms). Quantifica-
tion was achieved by integration of the peak area of [M + H]+ ion
traces of GDGTs. The absolute amounts of GDGTs were calculated
using an internal standard (C46 GDGT) following Huguet et al. (2006).
The average reproducibility of the indices, based on duplicate analysis
of a selected number of sediment samples, is ±0.03 for the BIT index
measurements and ±0.4 °C for the TEX86 temperature estimates.
The equations used in this study are as follows:

BIT ¼ I½ � þ II½ � þ III½ �
I½ � þ II½ � þ III½ � þ Cren:½ � :

TEX86
H and SST86H were calculated following Kim et al. (2010):

TEXH
86 ¼ log

GDGT−2½ � þ GDGT−3½ � þ Cren:′
h i

GDGT−1½ � þ GDGT−2½ � þ GDGT−3½ � þ Cren:′
� �

0
@

1
A

SSTH
TEX86 ¼ 68:4� TEXH

86 þ 38:6:

The CBT and pH were calculated following Weijers et al. (2007):

CBT ¼ −log
Ib þ IIb½ �
Iaþ IIa½ �

� �

CBT ¼ 3:33−0:38� pH:

image of Fig.�2
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3. Results

3.1. IsoGDGTs

IsoGDGTs and brGDGTs were detected in all sediment samples
and their concentrations are given in Table 1. The concentrations of
isoGDGTs were between 73.2 and 470.5 ng g−1 dry weight (dw),
accounting for 64–94% of total GDGTs except for site A2 (43%,
Table 1 and Fig. 2). These results suggest that the contribution of
Archaea to the GDGT lipids in the studied sediments was larger
than that of bacteria. The highest (lowest) abundances of isoGDGTs
were found in the SCS (PRE) respectively (Table 1). The isoGDGTs
were dominated by thaumarchaeol (cren.) and GDGT-0, accounting
for 39–49% and 14–38% of total isoGDGTs, respectively. The compo-
sitional distributions of isoGDGTs exhibited different patterns in
different areas. The highest GDGT-0 concentration was found in the
YS and the lowest in the ECS. The GDGT-0/cren. ratios were between
0.3 and 1.0, andwere higher in the YS (average: 0.8) than in the other
study areas (average: 0.4).
3.2. BrGDGTs

The concentrations of brGDGTs (Table 1) were between 17.4 and
185.7 ng g−1 dw, accounting for 6–36% of total GDGTs, except for that
in sample A2 (57%, Table 1). The highest brGDGT concentrations were
found in the PRE (Table 1), followed by the YS and the ECS, with the
lowest brGDGT concentrations in the SCS. In the PRE, the absolute con-
centrations of brGDGTs show an overall trend of progressive decrease
away from the shore. However, this trend was not consistent for all
sites, e.g., brGDGT concentration at site D5 was higher than that at
site D4. This inconsistency in the trendwasmore obviouswhen the con-
centrations of brGDGTs were normalized to total organic carbon (TOC)
contents (Fig. 2a and b).

The brGDGTs were dominated by those classed as GDGT-I (contain-
ing GDGT-Ia, Ib, and Ic, accounting for 31–60% of brGDGTs) and GDGT-II
(33–41% of brGDGTs). The concentrations of those classified as GDGT-
III, especially GDGT-IIIb and IIIc, occurred at low concentrations or
even below detection limits. The brGDGTs without cyclopentane moie-
ties (GDGT-Ia, IIa, and IIIa)weremore abundant than their counterparts
containing one or two cyclopentyl moieties in most of the sediments,
except for some samples in the YS. Furthermore, the relative abun-
dances of brGDGTs containing one cyclopentyl moiety (GDGT-Ib and
IIb) were higher than those without cyclopentyl moieties (GDGT-Ia
and IIa; e.g., YS-1, YS-4, and YS-5).
3.3. BIT and CBT values

Overall the values of the branched/isoprenoid index (BIT) index
ranged from 0.09 to 0.42 (except A2, with BIT 0.68), and the mean
values in the YS, ECS, and SCS were 0.23, 0.16, and 0.12, respectively
(Table 1). The highest BIT value was found in the PRE. As a whole, the
distribution of BIT values from the Pearl River mouth to the shelf of
the SCS displayed a notable trend (Fig. 2c); the samples taken close to
the coast had the highest BIT values (e.g., A2) (Table 1). In the inner
shelf, BIT values generally decreased progressively seaward. However,
the seaward decreasing trend in BIT values was not consistent e.g., the
BIT value for D6 was higher than that of D5, and the value for D3 was
higher than that of D2 (Fig. 2c).

The cyclisation ratio of branched tetraethers (CBT) values ranged
from −0.15 to 0.58. The CBT-based pH values (Weijers et al., 2007) in
the YS, ECS, SCS, and PREwere 8.3–9.2, 7.8–8.4, 7.7–8.1, and 7.2–8.0, re-
spectively (Table 1). Notably, the CBT-derived pH values progressively
increased seaward from the river mouth to the inner shelf and reached
8.0 at site C10 in the PRE (Fig. 2d).
3.4. TEX86
H -derived temperatures

According to Kim et al. (2010), the thaumarchaeol region-isomer
plays amore important role for temperature adaptation in (sub)tropical
oceans than in (sub)polar oceans. In our study, the thaumarchaeol
region-isomer content was similar to that of GDGTs 1–3 (Table 1), and
we found that most of themean annual SST in the study areas as deter-
mined by satellite remote sensing was above 15 °C. Therefore, the
following discussion focuses on TEX86

H derived temperatures.
The TEX86

H -derived temperatures (Kim et al., 2010, SST86H ) were
15.2–27.2 °C in the study areas (Table 1). From north to south, the aver-
age SSTH 86 values were 17.1, 22.8, 22.6 and 26.1 °C in the YS, ECS, PRE
and SCS, respectively. In comparison, the average of satellite-derived
annual temperatures (SSTsatellite, according to the NOAA global SST
dataset) in the YS, ECS, PRE and SCS were 14.9, 22.1, 25.6 and 26.5 °C,
respectively.

4. Discussion

4.1. Sources of brGDGTs in the studied areas and implications on pH

BrGDGTs have generally been attributed to soil bacteria (Sinninghe
Damsté et al., 2000; Weijers et al., 2006b), possibly Acidobacteria
(Sinninghe Damsté et al., 2011), which occur ubiquitously in soils,
peats, lakes, and marine sediments (Sinninghe Damsté et al., 2000;
Weijers et al., 2006b; Sinninghe Damsté et al., 2009; Tierney et al.,
2010). For coastal marine sediments, brGDGTs were initially thought
to be deposited after being transported by rivers from terrestrial soils;
therefore, the BIT index, based on brGDGTs derived from anaerobic
bacteria thriving in terrestrial environments (Weijers et al., 2006a)
and thaumarchaeol predominantly produced by marine planktonic
Thaumarchaeota (Sinninghe Damsté et al., 2002), was proposed as a
proxy for the input of soil OM to aquatic environments (Hopmans and
Weijers, 2004; Weijers et al., 2007). However, recent studies also sug-
gested the in situ production of brGDGTs in anoxic parts of the water
column and/or sediments of restricted fjords (Peterse et al., 2009) or
sediments in lakes (Sinninghe Damsté et al., 2009).

The present study showed a pronounced spatial variability in the
concentration of brGDGTs in coastal areas: the highest brGDGT concen-
trations (absolute values and relative to TOC) were found in the PRE
where the spatial distribution of brGDGTs showed an inconsistent but
overall seaward decreasing trend (Fig. 2a and b), which clearly did not
reflect the Pearl River catchment soil conditions. This patternwas differ-
ent from that described previously by Kim et al. (2006) andWalsh et al.
(2008) for recent sediments in the NWMediterranean (Gulf of Lyons)
and Vancouver Island fjords. Furthermore, the values of the CBT index
(the relative amount of cyclopentyl moieties), decreased seaward and
the CBT-derived pH values increased seaward in the same way as the
measured pH values (Chen et al., 2004), indicating that CBT-derived
pH values was influenced by that of the ambient water pH. This implies
that in situ production of brGDGTs was significant enough to overprint
the signal of soil-derived brGDGT input. These characteristics of the
brGDGT distribution reflect a mixture of sources, terrestrial soils in the
river catchment and in situ production in the estuary. Previous studies
also indicated aquatic production of brGDGTs in estuarine and coastal
areas (Peterse et al., 2009; Zhu et al., 2011). Thus, in this case, the BIT
index should not be applied directly to determine the relative contribu-
tion of terrestrial soil GDGTs to continental margins (Zhu et al., 2011).
Detailed investigations are needed for the identification of aquatic
sources and quantification of the production of brGDGTs found in
marine sediments.

The concentration of brGDGTs and relative brGDGT proportions of
the total GDGTs, being similar to BIT values, were higher in the YS
than those in the ECS and SCS (Table 1), indicating more terrestrial
soil input in the YS. The CBT-derived pH values in the YS were 8.3–9.2,
which were higher than the pH values of normal marine water (8.1).



Fig. 3. (a) Ternary diagram showing the composition of the major GDGTs in the soils (data fromWeijers et al., 2006b), open marine sediments as reported by Schouten et al. (2000) and
coastal marine sediments in China Sea and (b) GDGT-0/cren. ratios in China Sea.

Fig. 4. Relationship between the tetraether index of tetraethers consisting of 86 car-
bon atoms (TEX86

H )-derived and satellite-derived sea surface temperature (SST86H and
SSTsatellite, pluses (+) and squares (■) show site water depth b100 m and N1000 m,
respectively).
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The range was similar to the pH values of basic soils in the lower Yellow
River basin (7.5–9.0) (Xiong, 1986). There the abundances of Ib were
higher than those of Ia in the YS sediments, similar to the distribution
of brGDGTs in the Bohai Bay Basin, the lower Yellow River basin (calcu-
lated pH ranged from 7.5 to 9.0 based on CBT in soils). The results indi-
cate that the brGDGTs in the sediments taken from the YS were mainly
derived from soils transported by the Yellow River from its lower basin
into the Yellow Sea.

The concentrations of brGDGT were lower in the ECS and SCS than
those in the YS (Table 1). The CBT-derived pH values were 7.7–8.1, ex-
cept for site ECS-1 (pH = 8.4) (Table 1). The CBT-derived pH values
were higher than those of soils in the lower Yangtze River basin and
terrestrial areas of South China (5.5–7.5, Xiong, 1986), indicating that
the brGDGTs in the sediments of the coastal areas of the ECS and SCS
also recorded the input contribution frommarine sources. These results
suggest that part of the brGDGTs in the coastal areas of the ECS and SCS
might be produced in situ. Although a previous study (Yang et al., 2008)
indicated that terrestrial OM (mainly derived from soils) can account for
5–57% of the total organic carbon in the Changjiang River Estuary and
the ECS as determined by δ13C, C/N ratio and lignin content, the concen-
tration of brGDGTs was relatively low in the ECS. Themost likely expla-
nation is that most of the soil-derived brGDGTs were degraded in the
estuary (Zhu et al., 2011). While for the SCS, the low concentration of
brGDGTs was likely due to low input of terrestrial OM (Wang et al.,
2009), where the BIT values were relatively low (Table 1).

4.2. Sources of GDGT-0

A ternary diagram, illustrating the composition of the major GDGTs
in the soil, peat, coastal and open marine environments (Fig. 3a). indi-
cates greater contributions of cren. and GDGT-0 in marine settings
than in terrestrial environments. The proportions of brGDGTs, GDGT-0
and cren. were 25:3:4 and the average ratio of GDGT-0/brGDGTs was
0.1 in the global terrestrial setting (Weijers et al., 2006b). In our study,
the proportions of brGDGTs, GDGT-0, and cren. were 25:72:133 and
the average ratio of GDGT-0/brGDGTs was 2.9; significantly higher
than that calculated as an average for the global terrestrial environment.
Therefore, the dominant source of GDGT-0 may be marine instead of
terrestrial inputs. When the terrestrial portion of the inputs was
deducted, assuming that all of the brGDGTswere derived from terrestri-
al sources, the average of GDGT-0/cren. was calculated to be between
0.3 and 1.0 in the coastal areas of China (Fig. 3b). It was shown that
the GDGT-0/cren. values were higher in the YS than in other study
areas. GDGT-0 occurred not only in planktonic nonthermophilic
Thaumarchaeota, but also in methanogenic Archaea that did not pro-
duce any GDGTs with cyclopentane rings. Therefore it is suggested
that the relatively higher values of GDGT-0/cren. ratio in the YS may
be of a methanogenic Archaea source, whose optimal growth tempera-
ture is mostly below 20 °C (Franzmann et al., 1992; von Klein et al.,
2002), and are therefore likely to be thriving in the YS.

4.3. TEX86
H temperatures

For most of the areas studied the mean annual SST was above 15 °C
as determined by satellite remote sensing (Table 1), therefore, the
TEX86

H was chosen for the calculation of SST (Kim et al., 2010). The re-
constructed SST86H ranged from 15.2 to 27.2 °C in the studied areas
(Table 1). Comparison of these temperatures with satellite-derived
temperatures shows a positive correlation between SST86H and
SSTsatellite (Fig. 4, R2 = 0.78, for samples having BIT b 0.3). Therefore,

image of Fig.�3
image of Fig.�4
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the results of the present study suggest that the TEX86
H proxy could

be applicable to the reconstruction of SST in the studied areas and,
potentially, in similar settings.

The depth of sampling stations in the SCS are N1000 m, and all the
other areas are b100 m. Therefore the factors that influence the distri-
butions of GDGTs might be significantly different, e.g. seasonal effects
on blooms of tetraether-producing Thaumarchaeota (Zhang et al.,
2013). Therefore, these areas that have different bathymetric settings
are discussed separately below.

In the shallow areas, the correlation between SST86H and annual
SSTsatellite (R2 = 0.78, for samples having BIT b 0.3) was slightly
lower than that for TEX86

H -SST from global regression (Kim et al., 2010,
R2 = 0.87). One interpretation for this phenomenon could be attribut-
ed to the interference from GDGTs derived from terrestrial sources,
which had a significant impact, as large differences in the distributions
of land andwater column derived GDGTs could cause a bias at relatively
low BIT index values (b0.3). Based on the currently limited dataset, the
calculated temperatures in the YS and northern ECS were higher than
the annual SSTsatellite, while the opposite relation was observed in the
PRE and southern ECS. These results suggest that in tropical region,
the TEX86 temperature estimates are lower in samples with higher BIT
values, while the opposite holds for cold regions.

Another explanation is that GDGTs in nearshore sediments were
influenced by seasonality. The relatively better correlation between
SST86H and summer SST-satellite (R2 = 0.84, for samples having
BIT b 0.3) in the YS and northern ECS suggests that SST86H might be bi-
ased towards warmer season temperatures if the source organisms
thrive in those periods. Recent evidence suggests that some
Thaumarchaeota were nitrifiers (Wuchter et al., 2006) and use ammo-
nia, in themanner that phytoplankton and zooplankton do, as an energy
source at a competitive disadvantage (Murray et al., 1999). In the YS and
northern ECS, the presence of large phytoplankton blooms observed in
spring, which may outcompete the marine Thaumarchaeota (Wuchter
et al., 2006). By contrast, phytoplankton productivity was greatly
reduced during summer which could have led to a significant increase
in ammonia availability and thus induced higher Taumarchaeota pro-
ductivity (SinningheDamsté et al., 2009). In this case, theSST86H was like-
ly to imprint the information of summer SST in these areas, which is
consistent with previous observations showing that surface water
Taumarchaeotapopulationswere abundant duringwarm season in tem-
perate areas (e.g. Alonso-Sáez et al., 2008; Leider et al., 2010).

However, this is not the case in the subtropical-tropical southern ECS
and PRE, where the TEX86

H -derived temperatures were overall lower
than the annual SSTsatellite values (for sampleswith BIT b 0.3), reflecting
the winter SST. The lower than expected TEX86

H temperatures in these
areas might be attributed to the bloom of Taumarchaeota in winter.
The phytoplankton production declines in winter due to decreased ter-
restrial nutrient influx, and lower water column light caused by higher
load of suspended particles (Tang et al., 2007). Moreover, the calculated
temperatures substantially decrease shoreward, in agreement with the
winter SST distribution when nutrient and algal production declines.
For sites located in the Taiwan Straits (e.g. ECS-4 and ECS-5) and in
the PRE (e.g. C10 and D7), the values of calculated SST86H were signifi-
cantly lower than those of most seasonal and average SSTsatellite
(Table 1). This might be due to the influence of China's coastal current
(Li and You, 2003), especially, in the Taiwan Straits the current flows
along the coast of Mainland China, moving from north to south (Lin
et al., 2005), which transported the GDGTs produced in northern colder
sea areas into the southern region.

In the SCS, the sampling sites are located at water depths of
N1000 m, the SST86H values (except SCS-4) matched well with the
SSTsatellite ones (Table 1), similar to the results inferred from the core-
top sediments by Wei et al. (2011), suggesting that the TEX86 proxy
could be used universally to calculate the SST in the SCS with water
depth N1000 m. However, Jia et al. (2012) found that TEX86

H correlated
better with the annual mean temperature in the subsurface water
column (30–125 m) than that in surface waters (0–30 m) in the SCS.
In our study, the correlation between SST86H and annual mean tempera-
ture in subsurfacewater is not better than that with temperature in sur-
face water at these four sites. Therefore, for the limited dataset, TEX86

H -
based temperatures for surface sediments of deep water sites (depths
N1000 m) generally reflected the satellite mean annual sea surface
temperatures in the SCS.

5. Summary and conclusions

The study of GDGTs from surface sediments taken at depths of either
b100 m or N1000 m along transects in various oceanographic settings
in the sea around China revealed that:

1) The distribution of GDGTs reflect their biological sources and their
respective habitats. A striking example was that the distributions
of brGDGTs in the YS were similar to those in the lower Yellow
River basin, indicating that these brGDGTs were primarily of
terrestrial-soil origin. However, the variability of CBT-derived pH
values in the PRE suggest that branched GDGTs might also be
produced in situ in the sediment or water column.

2) TEX86
H -derived temperatures are better correlated to satellite-based

temperatures for samples with BIT values b0.3, although the regres-
sion (R2 = 0.78, n = 20) was slightly weaker than for the global
calibration dataset. In the shallow areas (water depth b100 m), a
systematic difference between SST86H and SSTsatellite in the coastal
areas of China might point to the effect of GDGTs derived from ter-
restrial inputs or seasonal bloom of Thaumarchaeota in different
oceanographic settings.

3) A large difference between warmer SSTsatellite and colder SST86H in
sediments was found in the Taiwan Straits (e.g. ECS-4 and ECS-5)
and south of Guangdong (e.g. C3 and D3). This may point to the
effect of the north to south long shore current in transporting the
biological proxies from the source area into the sediments in a differ-
ent oceanographic setting.
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