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Abstract

In the present study, titania nanoparticles were first constructed on mesoporous aluminosilicate Al-SBA-15 in supercritical carbon

dioxide (Sc-CO2) and the resultant samples were characterized by a combination of various techniques, such as X-ray diffraction

(XRD), nitrogen physisorption, 27Al MAS NMR, UV–vis diffuse reflectance spectroscopy, and transmission electron microscopy

(TEM). It was identified that the Al species incorporated samples retained structures similar to that of the parent SBA-15. In addition,

the content of titania loading varied with reaction temperature and time in Sc-CO2. As-synthesized TiO2/Al-SBA-15 samples were

evaluated in terms of photocatalytic decolorization of methylene blue in aqueous solutions. It was observed that all TiO2/Al-SBA-15

samples showed satisfactory decolorization efficiency that was much higher than those of TiO2/SBA-15 and commercial TiO2 under

identical conditions, which could be mainly attributed to the effective adsorption capability, resulting from the extension of specific

surface area after substitution of Si species with Al species.

& 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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1. Introduction

Heterogeneous photocatalysis through semiconductor
nano-oxides is shown to be an attractive technology for
the control of environmental pollution and has become
one of the most active research fields in recent years [1,2].
Among various metal oxide semiconductors used, titania
has been the most investigated one, due to the effective
photocatalysis, long-term thermal and chemical stability,
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low cost, and non-toxicity [3–5]. However, the nanosized
titania produced in general procedures is greatly limited
for practical applications because of the low specific sur-
face area without pore system in structure. Besides con-
glomeration, nanosized catalyst in aqueous is prone to
create a milky suspension and thus difficult to recover after
reaction [1].
To solve these problems, extensive efforts have been

devoted to fabricate supports with favorable features,
which may meet shortfalls, although sometimes supported
titania possesses low elimination efficiency [6]. SBA-15, a
new type of ordered hexagonal-array mesoporous silica
with two-dimensional p6mm hexagonal structure, one-
dimensional channels, thick walls, and high hydrothermal
ll rights reserved.
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Fig. 1. Schematic diagram of the apparatus.
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stability [7,8], has received much attention as a catalyst
support [9–11]. In order to widen the application scope,
numerous attempts have been made to incorporate het-
eroatoms into SBA-15 frame work, especially partial
replacement of Si4þ ions by Al3þ ions, to enhance the
hydrothermal stability and create new acid cites via direct-
synthesis or post-synthesis grafting techniques [12–14].
Actually, direct-synthesis method is more favorable
because it will not only enhance the hydrothermal stability
and create new acid cites, but also extend the specific
surface area to a certain extent [14]. These traits enable
Al-SBA-15 as a suitable catalyst and support [13–17].

Sc-CO2 with unique properties such as low viscosity,
high diffusivity, near zero surface tension, ease of complete
separation from the reaction products by simply control-
ling the temperature or pressure, etc, has been the focus of
many researches for developing green processes to prepare
nanostructured materials [18,19]. Good solvation proper-
ties of Sc-CO2 are able to facilitate the transfer of metal
precursors into SBA-15 channels to generate nanoparticles
without blockage of mesopores. In addition, the solvents
and impurities are easily removed after reaction, ensuring
formation of pure materials [20]. Liu et al. [21] have
prepared Ti-SBA-15 materials with Ti incorporated into
the framework of SBA-15 in supercritical CO2–ethanol
solution through a post-synthesis. Han et al. [22] have
produced monolayer and doublelayer of titanium dioxide
grafted SBA-15 using a surface sol–gel process in Sc-CO2.
The obtained materials with large surface specific surface
area, ordered channels, and confined titania nanoparticles,
are beneficial to facilitate the photocatalytic processes.
However, the preparation of titania nanoparticles over
mesoporous Al-SBA-15 using Sc-CO2 technique has not
been reported yet, as far as we know.

In this investigation, fabrication of titania nanoparticles
on mesoporous aluminosilicate Al-SBA-15 was first inves-
tigated by transfer and deposition of the titanium pre-
cursor with the assistance of Sc-CO2. The resultant
TiO2/Al-SBA-15 samples were characterized with a collec-
tion of techniques. Similar Al-SBA-15 structure after load-
ing titania was retained. These as-synthesized samples were
used to decolorize methylene blue, a cationic thiazine dye,
in aqueous solution. Interestingly, higher photodegradable
efficiency could be found for TiO2/Al-SBA-15 than that
for TiO2/SBA-15 and commercial TiO2 under the same
condition, as a result of the effective adsorption capability,
resulting from the extension of specific surface area after
substitution of Si species with Al species.

2. Materials and methods

2.1. Reagents

Ammonium chloride (NH4Cl) and poly(ethylene glycol)-
block-poly(propylene glycol)-block-poly(ethylene glycol)
(pluronic P123, EO20PO70EO20, MnE5800) were pur-
chased from Sigma-Aldrich Chemicals. Commercial TiO2
was bought from Acros Organics. Other reagents such as
aluminum tri-sec-butoxide (Al(O-sec-Bu)3,) tetrabutyl
orthotitanate (TBOT), tetraethyl orthosilicate (TEOS),
hydrochloric acid (HCl), and methylene blue (MB) were
obtained from Sinopharm Chemical Reagent Co. Ltd.
(Shanghai, China). All reagents were used without pur-
ification and all aqueous solutions were prepared with
deionized water.

2.2. Preparation of aluminosilicate Al-SBA-15

The mesoporous aluminosilicate Al-SBA-15 was pre-
pared according to the reference with a small modification
[23]: TEOS (9 mL) and Al(O-sec-Bu)3 (molar ratio of
Si/Al¼20, 0.5 g) in an HCl aqueous solution (pH¼1.5,
10 mL) was stirred at 313 K over 3 h before adding to
another HCl aqueous solution (pH¼1.5, 150 mL) contain-
ing P123 (4 g). The resultant mixture was further stirred at
313 K for 24 h, and then transferred into a Teflon-lined
stainless steel autoclave and aged at 373 K for 48 h. After
cooling down to room temperature, the product was
filtered, repeatedly washed with NH4Cl aqueous solution
and distilled water, and dried overnight at 373 K in air.
The target sample was finally obtained by calcination in air
at heating rate of 2 K/min upto 823 K and maintaining at
this temperature for 4 h to remove the copolymer template.
As a reference, SBA-15 was also synthesized through a
same procedure in the absence of aluminum source.

2.3. Preparation of TiO2/Al-SBA-15 in Sc-CO2

In the experimental, TBOT (0.2 mL) and Al-SBA-15
(0.4 g) were loaded on the bottom of the high-pressure
stainless steel vessel (400 mL) and the small cage hanged
underneath the lid, respectively. The small cage was
covered with 100-mesh screen to ensure the transport
and permeability of only molecular TBOT. The schematic
diagram of experimental setup is shown in Fig. 1. After
heating to a certain temperature, liquid CO2 was pressed
into the vessel by a syringe pump upto 20 MPa. The vessel
was maintained at these conditions for an assigned time.
Subsequently, the resultant solid was centrifuged, filtered,
washed three times with ethanol, and dried at 373 K for



Fig. 2. 27Al MAS NMR spectrum of the Al-SBA-15 sample.

Fig. 3. XRD patterns of (a) 2 h, 313 K, (b) 4 h, 313 K, (c) 8 h, 313 K,

(d) 4 h, 323 K, (e) 4 h, 333 K, and (f) 4 h, 343 K.
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24 h. The solid was calcined at 823 K for 5 h. By varying
the reaction time and temperature, TiO2/Al-SBA-15 (n, m)
was produced, where n represents the reaction time (h) and
m represents the reaction temperature (K).

The titania loading on mesoporous aluminosilicate
Al-SBA-15 and silicate SBA-15 was measured using the
ammonium sulfate–sulfuric acid digestion method [24].

2.4. Characterization

The crystalline phase of samples were analyzed by
powder X-ray diffraction on a Bruker AXS D8 Advance
X-ray diffractometer with a Cu Ka radiation source, at a
speed of 21/min within the range from 101 to 801 in 2y.
Nitrogen adsorption and desorption isotherms at 77 K
were performed using an ASAP 2010 volumetric adsorp-
tion analyzer after samples had been degassed at 473 K for
2 h. The pore size distribution data were calculated by the
BJH model from N2 desorption isotherms. The solid-state
NMR experiment was carried out at B0¼9.4 T on a
Bruker AVANCE III 400 WB spectrometer. The corre-
sponding resonance frequency of 27Al was 104.3 MHz. The
sample morphology was examined by means of transmis-
sion electron microscopy (TEM, JEM-2100F) at an accel-
erating voltage of 200 kV. The UV–vis absorption spectra
of the products were carried out on a Purkinje General T6
spectrophotometer (China). The UV–vis diffuse reflectance
spectra were recorded on Hitachi U4100 UV–vis spectro-
photometer using barium sulfate as standard.

2.5. Photocatalytic decolorization test

MB powder was dissolved in distilled water to make a
stock solution of 20 mg/L. The pH value of MB solution
was unregulated unless otherwise stated. Photocatalytic
activity of samples was evaluated by batch experiments,
using a LIMX-VII apparatus manufactured by Bylabo
Precision Instrument Co. Ltd. (Xi’an, China). Under
vigorously stirring, the mixture of 0.015 g catalyst and
30 mL MB solution was set in the dark for 30 min to
guarantee the adsorption–desorption equilibrium between
MB solution and photocatalyst before exposing to 500 W
high-pressure mercury lamp with a wavelength of 365 nm,
at an intensity of 156 mW/cm2. The photocatalytic deco-
lorization efficiency was checked through measurements of
absorbance band of MB at 664 nm after a fixed irradiation
time. The absorbance measurement of reaction solutions
was performed after separating catalyst from reaction
suspensions by centrifugation for 15 min (12,000 r min�1).

3. Results and discussion

3.1. 27Al MAS NMR

Fig. 2 depicts the 27Al MAS NMR spectrum of the
Al-SBA-15 sample. It exhibits two obvious signals at ca.
d¼0 ppm from octahedral AlO6 groups corresponding to
extra-framework aluminum species and ca. d¼52.9 ppm
from tetrahedral aluminum species of AlO4 units [25],
respectively. The presence of last signal demonstrates that
most aluminum ions have been effectively incorporated
into the virgin SBA-15 framework, as we expected.

3.2. XRD patterns

Fig. 3 represents the wide angle X-ray powder diffrac-
tion patterns of synthesized TiO2/Al-SBA-15 samples. Pure
Al-SBA-15 exhibits a single broad peak, characteristic of
amorphous silica [26]. Samples TiO2–Al-SBA-15 (2, 313),
TiO2–Al-SBA-15 (4, 313), TiO2–Al-SBA-15 (8, 313), and
TiO2–Al-SBA-15 (4, 323) shows evident peaks centered at
25.31 (101), 37.81 (004), assigning to characteristic diffrac-
tion of anatase TiO2 phase [27], which are not observed in
other samples. In addition, the intensity of anatase peak at
25.31 gradually decreases with increase of the reaction time
and temperature, which tallies well with the variation of
titania loading in Table 1, indicating that short reaction
time and low temperature are beneficial to enhance the
titania content over Al-SBA-15. The titania crystalline size
is calculated to be nearly 10 nm, a little larger than the
average pore size of about 6 nm in Table 1. As a result, we



Table 1

The specific surface areas (ABET), pore volume (VBJH) and pore size (DBJH) of samples SBA-15, Al-SBA-15, and TiO2/Al-SBA-15.

Samples ABET (m
2
/g) VBJH (mL/g) DBJH (nm) Titania content (%) Eg (eV)

Al-SBA-15 752 1.06 6.85 0 –

TiO2/SBA-15(4, 323) 389 1.08 8.03 4.1 3.36

TiO2/Al-SBA-15(2, 313) 463 0.64 6.52 18.1 3.43

TiO2/Al-SBA-15(4, 313) 471 0.71 6.13 17.8 3.28

TiO2/Al-SBA-15(8, 313) 570 0.85 6.54 13.3 3.35

TiO2/Al-SBA-15(4, 323) 517 0.66 5.46 21.7 3.13

TiO2/Al-SBA-15(4, 333) 529 0.73 6.03 6.6 3.25

TiO2/Al-SBA-15(4, 343) 632 0.88 6.08 3.3 3.01

Fig. 4. N2 adsorption/desorption isotherms of Al-SBA-15 and various

TiO2/Al-SBA-15 catalysts synthesized at different times and temperatures

by supercritical CO2: (a) Al-SBA-15, (b) 2 h, 313 K, (c) 4 h, 313 K, (d) 8 h,

313 K, (e) 4 h, 323 K, (f) 4 h, 333 K, and (g) 4 h, 343 K.
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concluded that anatase phase with big crystallite size was
formed on the external surface and small crystallite sized
or amorphous anatase phase was distributed inside the
channels, leading to the shrinkage of pore size as in
Table 1.

3.3. Nitrogen adsorption

Fig. 4 displays the N2 adsorption–desorption isotherms
of Al-SBA-15, TiO2/SBA-15 and TiO2/Al-SBA-15 sam-
ples. It is clearly observed that all TiO2/Al-SBA-15
examples represent the type IV isotherm according to
IUPAC classification and type H1 hysteresis loop at
relative pressure P/P0 ranging from 0.5 to 0.9, indicative
of uniformly mesoporous samples at the capillary con-
densation step [28]. While sample TiO2/SBA-15 shows a
type H1 hysteresis loop at relative pressure P/P0 ranging
from 0.6 to 0.9. The hysteresis is as a result of the existence
of the ink-bottle pores [29]. Fig. 5 shows the pore size
distribution of Al-SBA-15 and TiO2/Al-SBA-15 samples.
The pore width of TiO2/Al-SBA-15 samples was slightly
shrank or close to original Al-SBA-15, informing small
crystalline or amorphous TiO2 might incorporate into the
mesopores, in accordance with the XRD results.

Table 1 shows the textural properties of sample Al-SBA-
15, TiO2/SBA-15, and TiO2/Al-SBA-15. ABET value
389 m2/g of TiO2/SBA-15 is smaller than those of TiO2/
Al-SBA-15 samples, as a result of the substitution of Si4þ

species with Al3þ ions, which is in line with the Ref. [14].
The specific surface area of TiO2/Al-SBA-15 gradually
decreases compared to that of Al-SBA-15, indicating the
planting small crystallite anatase or amorphous semicon-
ductor within the ordered channels of the support [30].
A slight increase of the pore volume with the increase of
the synthesized time and temperature, which is well
consistent with the relatively low content of titania loading
over the mesoporous samples. However, the variation of
pore diameter from different samples is somewhat out of
accord with the titania content, possibly attributing to the
coexistence of big crystallite sized anatase outside the
channels and small crystallite sized or amorphous anatase
inside the channels, as stated above. From the Table 1, the
content of titania loading on Al-SBA-15 decreased with
the extension of reaction time, which might be owning to
the fact that prolonging the reaction time was beneficial to
export instead of import of titanium precursor by Sc-CO2.
Meanwhile, temperature was another effect on the content
of TiO2 loading. In our experimental, raising temperature
upto 323 K could enhance the TiO2 content, but further
raising temperature could contrarily reduce the TiO2

content, possibly owning to the comprehensive effect of
low dissolving capability and high mass transfer of Sc-CO2

under a high temperature.

3.4. UV–vis diffuse reflectance spectra

The UV–vis diffuse reflectance spectra of various differ-
ent samples TiO2/SBA-15 and TiO2/Al-SBA-15 are shown
in Fig. 6. Some samples containing small crystallite sized
or amorphous anatase titania inside the channels like
TiO2/SBA-15(4, 323) and TiO2/Al-SBA-15(2, 313) exhibit
an absorption edge of less than 375 nm, indicating blue
shifts from the absorption edge of bulk anatase titania by
well known quantum size effect for semiconductors along
with the decrease of particles size [31,32]. Other samples
show an absorption edge of over 375 nm, attributing to the
existence of big crystallite sized anatase outside the
channels in these samples. These are in accordance with
the results of XRD patterns and TEM measurements
in the following section. The corresponding band gap



Fig. 5. Pore size distribution of Al-SBA-15 and TiO2/Al-SBA-15: (a) synthesized at different temperature, and (b) synthesized at different time.

Fig. 6. The UV–vis diffuse reflectance spectra of various samples TiO2/

SBA-15 and TiO2/Al-SBA-15.
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energies were calculated according to the relation
Eg=1240/l onset and were listed in the Table 1.

3.5. TEM

Fig. 7 shows the microstructures of sample TiO2/Al-
SBA-15 synthesized at the temperature of 323 K and the
time of 4 h. It is apparently discerned the presence of small
titania nanoparticles inside the stripe patterns of Al-SBA-
15 structure as black spots and large titania nanoparticles
on the external surface of Al-SBA-15 as bulk forms. The
micrographs of sample TiO2/Al-SBA-15 show well-ordered
hexagonal arrays of mesopores, indicative of a 2D hex-
agonal mesostructure without destruction even after tita-
nia loading. The pore diameter estimated from the
micrograph is around 6 nm, which is in a good accordance
with the N2 adsorption measurement.
3.6. Photocatalytic decolorization of MB

Fig. 8 shows the photocatalytic decolorization capability
of synthesized samples over cationic dye MB. It is obvious
that all samples display satisfactory removal efficiency.
After 80 min, all samples could accomplish the complete
decolorization of MB under the same experimental condi-
tion. The samples TiO2/Al-SBA-15(4, 323) with 21.7%
titania content and TiO2/Al-SBA-15(8, 313) with 3.3%
titania content show the highest and lowest removal
efficiency upon MB, respectively. As a result, the photo-
degradable capability of samples was partially associated
with the TiO2 content on Al-SBA-15, that is to say, with
the variation of number of active cites.
Fig. 9 shows the comparative study of the photocatalytic

decolorization capability of TiO2/Al-SBA-15(4, 323),
TiO2/SBA-15(4, 323), and commercial TiO2 on MB. It is
apparent that both adsorption and degradable capabi-
lity of TiO2/Al-SBA-15(4, 323) are much higher than
TiO2/SBA-15(4, 323) and commercial TiO2 as well.
It can be explained by the following reasons. Much large
specific surface area of TiO2/Al-SBA-15 samples show
strong adsorption capability not only on the dye mole-
cules, but also on the significant amounts of water and
hydroxyl groups around the active sites, thus enhance
degradable efficiency [33]. We have tried a comparative
study of MB adsorption on both Al-SBA-15 and SBA-15
and found that much higher adsorption capability on MB
was observed using Al-SBA-15 as a sorbent. In this
sense, even lower titania content on Al-SBA-15 still shows
higher photocatalytic degradability comparing to sample
TiO2/SBA-15. Meanwhile, mesopores in the framework of
TiO2/Al-SBA-15 facilitates the import of dye molecules
and export of degraded species and therefore facilitate the



Fig. 7. TEM images of TiO2/Al-SBA-15(4, 323).

Fig. 8. The photocatalytic capability of samples TiO2/Al-SBA-15 on the

decomposition of MB.

Fig. 9. The photocatalytic capability of samples TiO2/Al-SBA-15, TiO2/

SBA-15, and commercial TiO2 on the decomposition of MB.
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photodecolorization process [22]. In addition, titania
nanoparticles dispersed over the mesoporous materials
own a high specific surface area and are thus beneficial
to the photodecolorization as well [34]. As a result,
presence of regular mesopores, confined titania nanopar-
ticles, and large specific surface area together contri-
buted to the enhanced photocatalytic degradability of
TiO2/Al-SBA-15 in comparison with TiO2/SBA-15 and
commercial TiO2. Coupling with the simple preparation
using a green technique and excellent photocatalytic
degradability, TiO2/Al-SBA-15 may have potential employ-
ments in the field of environmental protection and remedi-
ation in the future.

4. Conclusions

The preparation of titania nanoparticles on mesoporous
aluminosilicate Al-SBA-15 in Sc-CO2 was first reported in
this present study and the resultant samples were char-
acterized by a combination of various techniques. The
aluminum species incorporated samples maintained a
structure similar to that of the original SBA-15. The
content of titania loading on Al-SBA-15 changed along
with the reaction temperature and time in Sc-CO2. From
the analysis, large crystalline sized titania nanoparticles
were formed on the external surface and small crystalline
sized titania nanoparticles or amorphous titania were
incorporated into the mesopores. The as-prepared samples
were evaluated with regard to photocatalytic decoloriza-
tion of MB in aqueous solutions. All TiO2/Al-SBA-15
samples showed satisfactory decolorization efficiency,
which was much better than TiO2/SBA-15 and commercial
TiO2 under the same condition. The phenomenon may
possibly own to the presence of regular mesopores, con-
fined titania nanoparticles, and large specific surface area.
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