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Using in situ and Satellite Hyperspectral Data
to Estimate the Surface Suspended Sediments
Concentrations in the Pearl River Estuary

Qianguo Xing, Mingjing Lou, Chuqun Chen, and Ping Shi

Abstract—In situ remote sensing reflectance (Rrs) collected
during 2004-2006 and the planetary reflectance (Rp) derived
from EO-1/Hyperion image, are tested for estimating the sur-
face total suspended matter (TSM), total inorganic particles
(TIP) and water turbidity in the Pearl River Estuary (PRE).
The in situ data show that the content of TIP and turbidity is
proportional to the concentration of TSM which ranges from
6 mg/L to 140 mg/L. The band-subtraction of Rrs at 610 nm
and 600 nm, [Rrs(610) — Rrs(600)], and the subtraction of
the 26th and 25th Hyperion bands (609.97 nm and 599.80 nm),
[Rp(B26) — Rp(B25)], are used in an exponential regression
model to estimate the TSM concentrations, the mean relative
errors between the estimated and measured TSM are 27.2% and
23.3%, respectively for Rrs and Rp, and the root mean square
errors of estimation are 12.6 mg/L and 5.9 mg/L, respectively. This
band-subtraction of two neighboring bands shows better perfor-
mance than several popular single-band and band-combination
models. This good performance may be mainly attributed to the
band-subtraction of the two neighboring bands which improves
the sensitivity of reflectance to suspended sediments by reducing
the background impacts from water surface reflection and path
radiance at the specific wavelengths. These methods and findings
with the high spatial and high spectral resolution data may be
used for the remote sensing of turbid estuary waters although
further validation work with a wider range of TSM concentration
may be necessary.

Index Terms—Hyperion, Pearl River Estuary, remote sensing,
suspended sediments, total inorganic particles, total suspended
matter, turbidity.

I. INTRODUCTION

N THE WORLD, the annual discharge of sediments to the
oceans by the rivers is about 20 billion tons [1]. The sus-
pension of sediments in water not only influences the aquatic
ecology and biogeochemical cycles in estuaries [2], but also
plays a key role in the forming and erosion of coastal land. Sus-
pended sediments, full of organic and inorganic particles, are
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the main source of total suspended matter, and control the tur-
bidity of waters. Remote sensing is considered as an effective
method of measuring the surface suspended sediments or the
relevant water quality parameters and further evaluating the en-
vironment quality status [3]-[6].

At present, researchers are still trying to develop operational
remote sensing algorithms to quantify suspended matter in
coastal waters [7]. In addition to the impacts from the high
content of color-producing components, e.g., micro-algae,
colored dissolved organic matter, etc., the local characteristics
of suspended sediments which are quite different in particle
size and constituents in coastal waters, contribute to the op-
tical characteristics of sediments and make the water color
more optically complicated [8]. Moreover, there are still some
shortcomings in the band configurations of current satellite
imagers, e.g., due to the fact that the optical characteristics
of Case-II waters are not fully understood yet, the spectral
resolution and central wavelength settings of the current oper-
ational water color sensors like SeaWiFS (Sea-viewing Wide
Field-of-view Sensor), MODIS (Moderate Resolution Imaging
Spectroradiometer), are not adequate for coastal waters. Thus,
it is quite difficult to develop an operational algorithm for the
retrieval of suspended sediments, especially for estuary waters.
Previous studies show that suspended matter retrieval models
established by different researchers are highly dependent on
local characteristics of study area where the data are collected,
e.g., single band model, band ratio [9], band combination [10],
[11], and reflectance peak area model [12].

In this study, hyperspectral data is adopted to explore the
potential of remote sensing in estimating the suspended sedi-
ments, the content of inorganic particles, and turbidity in the
Pearl River Estuary, China. /n situ collected data will be used
to study the characteristics of remote sensing reflectance corre-
sponding to suspended sediments and to evaluate the retrieval
models, and the optimum model will be tested with Hyperion
image data collected by satellite EO-1 (Earth Observing 1) for
further application.

II. METHODS AND DATA

A. Study Area

The Pearl River is the largest river in south China with a mean
annual runoff of up to 336 billion cubic meters, and it has three
branch rivers—Xijiang, Beijiang and Dongjiang. The Xijiang
river, the trunk of the Pearl River, flows 2,197 kilometers before
draining into the South China Sea, and has 77% of the total
runoff of the Pearl River. The three rivers meet at the Pearl River
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TABLE 1
HYPERION AND THE OTHER TWO ON-ORBIT HYPERSPECTRAL IMAGERS
Sensor HYPERION HSI HICO
Starting year 2002 2008 2009
Platform EO-1 HJ-1A ISS
Orbit Sun-synchronf)us circular Quasi- ‘Sun-synch‘ronous circular orbit
orbit circular orbit
Altitude, km 705 650 343
Swath width, km 7.7 50 42
Revisit cycle, day 5~16* 4~31% 1~3%
Spectral range, nm 400~2500 450~950 360~1080
Number of bands 220 115 128
Spectral resolution, nm 10 5 5.7
Spatial resolution, m 30 100 90
Ratio of S/N <200 50~100 >200

*With side-looking mode.
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Fig. 1. Study area and sampling stations at the Pearl River Estuary (&,
GMRMC routine stations, on May 18, 2004, May 23, 2006 and Aug., 21, 2006;
e, stations of sampling simultaneously with satellite over-fly, on Dec. 6, 2006,
i.e., S1, S2 to S16 in turn from the upper to the lower of the image; *), stations
of cruise on Dec. 21, 2006).

Delta formed of the silt deposits at the river estuary (the Pearl
River Estuary, PRE), where they flow into the South China Sea
through eight outlets and form the network of rivers in this area.
As relevant records, the average annual discharge of sediments
is about 75, 290, 000 t [13]. The estuary is very important for
transportation, fisheries and the habitat of rare species such as
Chinese white dolphin. The Pearl River delta is highly populated
and industrialized especially in the latest three decades, and the
PRE water status is worsening due to the impacts brought by
human activities. Many management projects are launched by
local governments to recover the water environment and make
the water more clean. The study area is shown in Fig. 1.

B. Sampling Surveys

From 2004 to 2006, five cruises were carried out in the PRE to
collect the data of remote sensing reflectance and water quality
data. A semi-simultaneous sampling campaign was carried out

during the period of 9:30 AM—12:00 AM with the overpass of
the EO-1/Hyperion at 10:37 AM on Dec. 6, 2006. The Hype-
rion on board the satellite of EO-1 is the first spaceborne hy-
perspectral imager (http://www.eol.usgs.gov/hyperion.php), it
has high radiometric accuracy, and can monitor an area of 7.5
km x 100 km per image with a ~10 nm spectral resolution of
220 bands (from 0.4 to 2.5 sm) and with a 30-meter spatial res-
olution, which makes its product more suitable for monitoring
the small-scale fine spatial distribution of water parameters [14],
[15] than other product with coarse spatial resolution [16]-[18].
As shown in Table I, the characteristics of Hyperion are com-
pared with the sensors of Hyperspectral Imager for the Coastal
Ocean (HICO) on board the International Space Station (ISS)
and the HyperSpectral Imager (HSI) on board HJ-1A [19].

All the cruises were carried out with the ship 908# from
Guangzhou Marine Resources Mornitoring Center (GMRMC),
and the in situ water sampling and laboratory analysis were
according to the China National Standard (GB17378.7-1998).
The remote sensing reflectance (FRrs) and turbidity were mea-
sured in situ by portable instruments [20], [21]. Water samples
were collected at the depth of 0.5 m below the water surface
and kept in cool and dark containers for further laboratory
analysis that day. 1 L of water samples were filtered with
the dried (at 60°C) and preweighted 0.45 pm polycarbonate
Whatman membrane filters (initial weight of membrane filter,
WO, mg), and the filters were dried with the temperature of
60°C until their weights (W1, mg) were constant, then we
calculated the mass of filtered sediments (W1-W0, mg) and the
concentration of total suspended mater (TSM, mg/L); finally,
the dried filters were put in preweighted pots (W01, mg) and
combusted at 450°C for 6 hrs to remove the combustable
organic matter and the pots were weighed (W02, mg), and we
had the mass of total inorganic particles (TTP, W02-WO01, mg)
and their concentrations (mg/L). The general information about
the cruises and data is shown in Fig. 1 and Table II.

C. Processing of in situ Spectra Data and Analysis

The in situ collected Rrs spectra are bin-averaged to provide
continuous spectra with a 10 nm bandwidth, which is close to
the band configurations of Hyperion. If random band-combi-
nation is used to investigate the relationship between the sus-
pended sediments and the tens (or hundreds) of bands, the work-
load will be huge and the result is usually ambiguous. The algo-
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TABLE II
SAMPLING SURVEYS IN THE PEARL RIVER ESTUARY AND DATA SUMMARY

Date Avrg. TSM  Avrg.Turbidity TIP Sampling Sites
(S.D.) (S.D.)

May 18, 2004 53.2(27.6) 52.5(31.1) - A

May 23, 2006 22.6 (15.3) 27.8 (15.3) - A

Aug. 21, 2006 49.0 (35.8) 37.5(27.5) - A

Dec. 06, 2006 25.0 (11.3) - 21.6 (10.2) °

Dec. 21, 2006 34.0 (28.4) - 31.7 (26.3) O]
Averages (S.D.) 39.1 (28.5) 429 (28.9) 26.7(20.3)

“~” indicates no data collected.

rithms with single band and the first or second order derivatives
are arithmetically simple and relatively clear in a bio-physical
view. According to the preliminary results from Xing et al. [22],
the first order derivative of I2rs (1) has better performance than
the second order derivative in estimating the sediments concen-
trations in the PRE, especially at 605 nm.

Antl — An

@)

where 7 is the band number, X is the wavelength, Rrs'*! is the
first-order derivative (a finite difference approximation of the
derivative with respect to wavelength), and its central wave-
length is (A, 41+, )/2. In our practice, the central wavelengths
are fixed, i.e., (A,41 — An,) is constant, so, the model is substi-
tuted by the band-subtraction of the two neighboring bands.

Li et al [11] proposed a popular two-band combina-
tion algorithm for the retrieval of suspended sediments
in the Yangtze River Estuary, China. The input vari-
able includes the bands of 550 nm and 670 nm with the
form of [Rrs(550) + Rrs(670)]/[Rrs(550)/Rrs(670)]
(Li model). A remote sensing model of TSM using
MODIS data is proposed by Dennis K. Clark for the
most popular ocean color remote sensing software of
SEADAS (http://www.oceancolor.gsfc.nasa.gov/forum/ocean-
color/topic_show.pl?tid=1559), in which a fifth-order poly-
nomial function with the input variable of [Rrs(440) +
Rrs(490)]/ Rrs(550) is used (Clark model). The two models
will be tested with the in sifu Rrs data for comparisons.

Root mean square error (RMSE) and relative error (RE), as
(2) and (3), will be used to evaluate the accuracy of different
models in this study:

" ] — 2
RMSE _ \/Zi—l (Cest'l,m,a,ted Cm ea,sured)
n

)

‘Oestimated - Cmeasu‘red| % 1000/(«)7

Cmea,sured

RE =

(€))

where C,,casured and Cegtimatea are the concentration of TSM
measured in situ and estimated by model, respectively.

D. Processing of Hyperion Image and Analysis

For the Hyperion image data collected on December 6, 2006,
it is smoothed at first with a window of 3 x 3 pixels to re-
duce possible noises caused by detectors, and then the pixels
of band 150 (1648.90 nm) with the DN value lower than 100

(1.25 W/(m? - sr - ym)) are classified as water. For the pixels
of water, the DN values of each band for water are converted
to radiance on the basis of the coefficients of gains and offsets,
and further converted to the planetary reflectance (Rp) to re-
move the impacts from the solar irradiance due to the changes
in the sun’s elevation and the sun-earth distance [23], [24], as

(4):

Rp(\) = 7 L(A) - d?

~ Fy()) -cosd @)

where L{A) is the spectral radiance recorded by the sensor, d is
the earth-sun distance in astronomical units, () is the mean
solar exoatmospheric irradiance, and € is the solar zenith angle.
The latter three parameters can be calculated or found using
look-up tables (http://www.eol.usgs.gov/hyperion.php).

As shown in Fig. 1, among the 16 stations, the first station S1
is out of the Hyperion image because the site was not accessible
on Dec. 6, 2006, and the last five stations at the lower of the
image were heavily impacted by clouds. So, the data for the 11
stations from S2 to S12 are used for analysis with the image
data.

III. RESULTS AND DISCUSSION

A. TSM, TIP and Turbidity

According to the collected data during these cruises, the con-
tent of TSM has a wide range from 6 to 140 mg/L, and its aver-
aged content (with the standard deviation) is 39.1 mg/L (£28.5
mg/L), which is close to other observation results [25] at this
area. As shown in Fig. 2, the water turbidity and the total inor-
ganic matter (TIP) are proportional to the content of TSM, and
the averaged ratio of TIP to TSM is 87.3% (£5.9%). The good
linear relationship between them makes it possible to select one
of them as their proxies in actual remote sensing applications,
e.g., TSM in this study. In this case, the turbidity data were col-
lected in the months of May and August (wet season), and the
TIP data in December (dry season); so, the linear relationship
between TSM and them may be different in different seasons.
More data can be collected in different seasons at different area
to investigate this issue and find the robust relationship. It should
be noted that the turbidity depends on not only the concentra-
tion of particles (TSM or TIP) but also the size, composition of
particle matter and so on [26]. The relatively more irregular re-
lationship between turbidity and TSM (see the scattering plot of
Fig. 2) also suggests that it may need a specific retrieval model
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Fig. 2. The relationship between TSM and TIP, turbidity in the PRE. (TSM vs.
Turbidity is shown in black symbol “+”, and TSM vs. TIP in red diamonds).
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Fig. 3. In situ collected remote sensing reflectance (I?rs) spectra of the PRE
waters.

for turbidity rather than a simple TSM-based model [ 7] although
we don’t intend to do so in this study.

B. Spectra of Remote Sensing Reflectance

Usually, because of the strong light absorption by water
molecules, the I’rs of water is low and has small fluctuations
at long wavelengths. However, in this study, as in Fig. 3, the
in situ collected Rrs varies sharply even at longer wavelengths
(750-850 nm), which may be partly ascribed to the difference
in the suspended particles concentrations and their different op-
tical characteristics. In the study area, the network of abundant
rivers provide many sources of sediments from the upper reach,
and the human activities also disturb the estuary bed and lead
to the re-suspension of bed sediments, e.g., dredging, ships’
passing-by. The different sources of sediments vary in particle
size and constituents [25]. Sky conditions changed greatly
during the cruises, the empirical method to remove the Fresnel
effects of sky light [20] is not adequate and thus bring some
errors, which will also contribute to the variations of Iirs.

C. Estimating TSM Using in situ Hyperspectral Data

Correlation analysis was made between TSM and the single
bands, the first-order and second-order derivatives as by Xing
et al. [22], the results (Fig. 4) suggest that the first derivatives
at several wavelengths have better correlation relationship with
the content of suspended sediments, especially at 605 nm, i.e.,
[Rrs(610)— Rrs(600)]. As previously mentioned, the first-order
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Fig. 4. Correlation between TSM and single bands of Rrs, the first and second
order derivatives.

derivative is another form of band subtraction. Results show
that, the band subtraction of [Rrs(610) — Rrs(590)] is close to
[Rrs(610) — Rrs(600)]; the single bands at longer wavelength
(>650 nm) is more correlated to TSM (correlation coefficient,
r > 0.4), especially at about 720 nm and 800 nm, and 480 nm
seems to have no correlation with TSM (r & 0), so Iirs(720) is
normalized by Rrs(480) as [Rrs(720) — Rrs(480)], a different
band combination of subtraction; in addition, the two-band com-
bination of [(Rrs(350) 4+ Rrs(670))/(Rrs(550)/Rrs(670))]
proposed by Li et al. [11] and the above mentioned three band
combination of [(I2rs(440) + Rrs(490))/Rrs(550)] are also
tested for comparisons. The relationships are shown as in
Fig. 5. Statistical models are developed by linear or nonlinear
regression, and their performances are shown in Table III.
In general, the band-subtraction combination in the form of
first-order derivative at 605 nm have the best performance with
the lowest mean RE and RMSE; the three band combination
proposed by Clark (Fig. 5(f)) fails in the turbid PRE waters;
maybe due to the fact that the two-band combination proposed
by Li et al. [11] (Fig. 5(e)) was also developed on the basis
of data collected at the estuary (Yangtze River), the model of
Li et al. [11] performs well at the Pearl River Estuary, and its
estimation accuracy is comparable to that of the single band of
Rrs(720) (Fig. 5(c)), although they are not so good as the ones
here in the form of band subtraction. Tassan [10] developed a
model for the retrieval of suspended sediments concentration
in the Gulf of Naples (Mediterranean Sea), and this model
was optimized by Tang et al. [27] and it worked well at the
Yellow Sea and the East China Sea, however it seems to be not
suitable for the Pearl River Estuary waters: the determination
coefficients in the regression between TSM and the band-com-
bination index (R? = 0.2513), is even much lower than that
of the single band model (Fig. 5(c)) or the model of Li ef al.
[11] (Fig. 5(e)). The good performance of the band-subtraction
especially of two neighboring bands can be mainly ascribed to
its characteristic ability to remove the flat-curve-like spectral
background impacts, e.g., Fresnel effect [21]. In field work, the
measured upwelling radiance above water (Lu) is the sum of
the reflected sky light (Lsky) and the water-leaving radiance
(Lw), i.e., Lu = Lsky + Lw. When the upwelling radiance
is normalized by downwelling irradiance (Fd), we can get:
Lu/Ed = Lsky/Ed + Rrs. The curve of Lsky/Ed is close
to a flat line at longer wavelength (600 nm and above), so,
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Fig. 5. The relationship between TSM and the single I?rs band and band combinations (number of data points, n = 55). (Statistical models are established by
linear or nonlinear regression for different input variables of Rrs: linear model is in red color and nonlinear in black.) (a) Rrs(610) — Rrs(600); (b) Rrs(610) —
Rrs(590); (c) Rrs(720); (d) Rrs(720) — Rrs(480); (e) [Rrs(350) + Rrs(670)]/[Rrs(350)/Rrs(670)]; (f) [I2rs(440) + Rrs(490)]/ Rrs(550).

TABLE III
TSM RETRIEVAL MODELS AND PERFORMANCES

X Algorithms (y, TSM) R? Mean RE, % RMSE, mg/L
_ ,1102.4x

Rrs(610) — Rrs(600) y=101.73xe 0.7484 27.2 12.61

y = 47000x + 88.747 0.7193 35.3 15.03
Rrs(610) — Rrs(590) y =105.51x 38008« 0.7418 27.5 13.80

y =4191.9x1 2652 0.5681 37.1 2128
Rrs(720)

y=2177.8x-10.165  0.4628 41.4 20.79
Rrs(720) — Rrs(480) = 36.148x 8467 0.6811 30.6 16.29
[Rrs(350) + Res(670) /| _ 5543 51,5743 0.5265 39.7 21.99

[Rrs(550) /Rrs(670)]

band subtraction may reduce the effects of sky light’s Fresnel
reflection at the water surface.

D. Mapping of the Surface Suspended Sediments With
Hyperion/EO-1

For Hyperion image data, the 26th and 25th bands (B26 and
B25), i.e., the bands with the wavelength of 609.97 and 599.80
nm, respectively, have the wavelength very close to that in
Fig. 5(a), and the corresponding first-order derivative can be
written as [Rp(B26) — Rp(B25)]. As in Fig. 6(a), an exponen-
tial function similar to that in Fig. 5(a) fit well the relationship
between the in situ TSM and [Rp(B26) — Rp(B25)] (see (5)),
and the difference between the estimated TSM and the in situ
measured is small: the mean RE is 23.3%, and the RMSE 5.9

mg/L. Because of the atmospheric effects, I2p at the top of at-
mosphere (TOA) is linked but quite different to I2rs just above
the water surface. Iirs is defined as the ratio of water-leaving
radiance (Lw, mW /(cm? - ym - sr)) to downwelling irradiance
just above the surface (Ed, mW /(cm? - zm)) [28], while Ip is
the ratio of upwelling radiance () recorded by satellite sensor
to the solar irradiance (see (4)); L is the sum of the attenuated
Lw by the atmosphere and the atmospheric path radiance
(Lp), and Fd is the sum of the attenuated solar irradiance and
the atmospheric path irradiance. So, when band subtraction
is applied to I?p, the atmospheric absorption and scattering
will affect the actual empirical retrieval model. Atmospheric
correction has been done with Hyperion hyperspectral image
data[14], [15], however, the operational method of atmospheric
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Fig. 6. The relationship between TSM and band subtraction index: a, [Rp(B26) — Rp(B23)], and b, [Rrs(610) — Rrs(600)]. (B26 is for the band at 609.97
nm, B25 for 599.80 nm, and the wavelength corresponding to [Rp(B26) — Rp(B23)] is also 605 nm, i.e., Zp'** at 605 nm).

correction for turbid coastal waters remote sensing is still a
question. Although no atmospheric correction was done with
the original Hyperion data, the exponential model in Fig. 6(a)
is still comparable to that in Fig. 6(b) which is based on the
in situ Rrs spectra. According to the atmospheric effects, the
10-nm-resolution spectrum of atmospheric path radiance is
relatively flat at 600 nm or 610 nm, so, the band subtraction of
two bands especially in neighborhood can remove most of the
effects caused by atmospheric path radiance. This application
supports the idea that the first-order derivative may be used
to reduce atmospheric impacts [29]. The first order derivative
approach can also be used to estimate the surface chlorophyll
[21], although it may be not the most appropriate one.

[TSM]=a- ol (Rp(B26)—Rtp(B25)) (5)
where @ and b are coefficients calibrated in practice, i.c., 16.697
and 266.63, respectively in this study.

On the basis of the (5) and the linear relationship between
TSM and TIP, turbidity, the three parameters in the PRE are
estimated by Hyperion image data, as shown in Fig. 7; although
the image is not wide enough, the result still shows the sharp
spatial variations in the surface suspended sediments, and also
indicates the area with relatively higher content of suspended
sediments at the southwestern part of the PRE, especially near
the Qi’ao island (see its position in Fig. 1). This distribution
pattern of surface suspended sediments is consistent with the
common sense that the southward turbid current at PRE turns
west under the Coriolis force [30]. The Advanced Land Imager
(ALIJ) also on board EO-1 was used to study the turbid waters of
Maodaomen waterway in the PRE [31], but it didn’t cover the
area of Hyperion image in our study. These studies can give a
more full spatial review of the PRE turbid waters.

IV. CONCLUSIONS AND PERSPECTIVES

The first-order derivative has the ability to remove the spec-
tral background caused by sky light and atmospheric path radi-
ance at certain wavelengths. In practice, due to the fixed band
settings, the first-order derivative spectra can be simplified as
a band combination of band subtraction of two neighboring
bands. For the suspended sediments concentration (TSM) which
ranges 6—140 mg/L at the Pearl River Estuary, China, the expo-
nential retrieval model of using the first-order derivative of re-
flectance at 605 nm (band subtraction of two neighboring bands)
is proposed. The model is applied to the in situ remote sensing

Unit, NTU
161

Unit, mg/L
186

Fig. 7. The distribution of TSM, TIP and turbidity retrieved from Hyperion
image. The spatial distributions of TSM, TIP and Turbidity are very close be-
cause of the linear relationship between these three parameters (note the differ-
ence in color bar). (a) TSM; (b) TIP; (c) Turbidity.

reflectance and the Hyperion planetary reflectance, both satis-
fying performances in estimating the TSM are achieved: the
mean RE is less than 30%, and RMSE lower than 13 mg/L.
These results suggest that the method of first-order derivative
(or, subtraction of two neighboring bands) may be used for es-
timating the suspended sediments in coastal turbid waters, and
that the hyperspectral image data like Hyperion is applicable in
coastal water remote sensing.

In this case, the index of first-order derivative is used to es-
timate suspended sediments, and the index at 605 nm has a
good performance; however, it should be kept in mind that,
there may be more potential wavelengths suitable for the re-
trieval of suspended sediments, e.g., 585 nm, 645 nm etc. The
first-order derivative can deal with the atmospheric path radi-
ance, and we expect for its new forms which be improved to
handle the atmospheric transmittance and make the spaceborne
remote sensing model more robust. And, for further application
of this model to other more turbid estuary waters, validation
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work need to be done with a larger range of TSM concentra-
tion than the 6-140 mg/L at the Pearl River Estuary.
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