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Abstract Spatial point pattern is an important tool for
describing the spatial distribution of species in ecology.
Negative binomial distribution (NBD) is widely used to
model spatial aggregation. In this paper, we derive the
probability distribution model of event-to-event nearest
neighbor distance (distance from a focal individual to its
n-th nearest individual). Compared with the probability
distribution model of point-to-event nearest neighbor
distance (distance from a randomly distributed sampling
point to the n-th nearest individual), the new probability
distribution model is more flexible. We propose that
spatial aggregation can be detected by fitting this prob-
ability distribution model to event-to-event nearest
neighbor distances. The performance is evaluated using
both simulated and empirical spatial point patterns.

Keywords Spatial point pattern Æ Negative binomial Æ
Distance sampling Æ Barro Colorado Island, Panama

Introduction

In ecology, the spatial point pattern, which is obtained
by mapping the locations of each individual as points in
space, is a very important tool for describing the spatial
distribution of species (Legendre and Fortin 1989).
Spatial analysis of point patterns is helpful in revealing
the underlying ecological mechanisms behind the spatial
distribution patterns (Condit et al. 2000; Stoyan and
Penttinen 2000; John et al. 2007). There are three gen-
erally accepted types of spatial point patterns: regular,
random, and aggregated (Pielou 1960). To detect spatial

patterns, quadrat sampling is one useful method in
ecology. Quadrats are randomly thrown on the space
and then the number of individuals gained in the each
quadrat is counted. The quadrat count data can be well
fitted by three discrete probability distribution models,
generalized binomial distribution, Poisson distribution,
and negative binomial distribution (NBD). They corre-
spond to regular, random, and aggregated spatial point
patterns, respectively (Bliss and Fisher 1953; Pielou
1960; Boswell and Patil 1970; He and Gaston 2000;
Grevstad 2010; Zillio and He 2010). Poisson distribution
usually serves as a null model of complete spatial ran-
domness. Particularly, NBD are the most widely used
models as aggregated populations have been found to be
very common in nature (Pielou 1960, 1961; He and
Gaston 2000).

The detection of spatial distribution was firstly
implemented by computing kinds of indices based on
quadrat count data, such as Green’s dispersion index
(Green 1966) and the Poisson index of dispersion (Cox
and Lewis 1966), etc. However, spatial patterns inferred
from quadrat sampling seriously depend on quadrat size
and shape. Moreover, quadrat sampling also suffers
from the problem of loss of information, such as spatial
location of each quadrat and relative positions of indi-
viduals within quadrats. This information cannot be
effectively reflected in the frequency distributions and
various indices of aggregation (Hurlbert 1997).

Another class of indices is calculated based on dis-
tance sampling, such as the aggregation index of Clark
and Evans (1954) and the index of segregation (Pielou
1960), etc. These indices either use distances from ran-
domly selected points (sampling points) to the nearest
individuals (also referred to as events or mapped points
in references) or use distances from selected individuals
to their nearest neighbors. We denote these two kinds of
nearest neighbor distance (NND) as point-to-event
NND and event-to-event NND in this study. The
advantage of these indices is that they do not depend on
the arbitrary choices of quadrat size or shape, especially
the information of relative positions of individuals is
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incorporated.The disadvantage of these indices is that they
only use the ensemble information ofNND, sometimes the
mean or the variance (Stoyan and Penttinen 2000). It is
natural to consider the probability distribution function of
NND of higher rank (n-th NND). Stoyan and Penttinen
(2000) noted that the probability distribution function of
NND can give a better parameter estimate than general
second-order characteristics such as Ripley’s K-function
(Ripley 1976, 1977),L-function (Ripley 1988;Diggle 2003),
and the pair correlation function (Stoyan and Stoyan
1996). The probability distribution models of n-th NND
can be derived theoretically and are equivalent to the null
models, Poissonmodel, andNBDmodel (Clark andEvans
1954; Thompson 1956; Eberhardt 1967). Compared with
fitting Poisson or NBD models to quadrat count data, fit-
ting the probability distributionmodels ofNND to nearest
neighbor distances has many advantages. First, distance
sampling is easy to implement in the field. Second, the
information of relative position of individuals in space can
be reflected inNNDs, and the problem of information loss
can be alleviated.

In this paper, we first present the probability distribu-
tion models of n-th NND, which are directly derived from
the Poisson model and negative binomial model, respec-
tively. Then we fit these probability distribution models to
simulated point patterns and real point patterns of trees
species in a tropical forest. The performance of fitting is
then evaluated by a synthetic comparison and analysis.

Probability distribution model of n-th nearest neighbor
distance

Poisson model vs. negative binomial model

The Poisson model describes the random spatial distri-
bution in which the number of individuals in a region
A follows the Poisson distribution (Thompson 1956;
Pielou 1960):

pðNðAÞ ¼ xÞ ¼ ðkAÞxe�kA

x!
; x ¼ 1; 2; . . . ð1Þ

where k is the density of individuals and N(A) is the
number of individuals in region A. The negative bino-
mial model is a very flexible probability distribution
model and widely used to model spatial aggregation
(Pielou 1960; Boswell and Patil 1970). The number of
individuals in a region A follows the negative binomial
distribution:

pðNðAÞ ¼ xÞ ¼ Cðk þ xÞ
x!CðkÞ 1þ k

kA

� ��x

1þ kA
k

� ��k

;

x ¼ 0; 1; 2; . . .

ð2Þ

where k is a flexible aggregation parameter varying from
0 to +¥ representing spatial patterns changing from
extremely aggregated to extremely random. CðÞ repre-
sents the gamma function ðCðnÞ ¼ ðn� 1Þ!Þ. Sometimes,
1/k is used as an index of aggregation. NBD distribution

becomes Poisson model when k fi +¥. In practice, it
is difficult to distinguish Poisson distribution from neg-
ative binomial distribution when k is larger than 10
(Zillio and He 2010). In modern statistics, the spatial
point pattern can be generated by stationary and iso-
tropic point process (Stoyan and Penttinen 2000; Diggle
2003). The Poisson distribution pattern can be easily
simulated from the homogeneous Poisson point process.
NBD can describe point patterns generated from the
Neyman-Scott, Thomas, or Cox point process, although
there is no stationary point process that directly gener-
ates the NBD (Diggle 2003; Zillio and He 2010).

Point-to-event nearest neighbor distance

The probability distribution model of point-to-event
NND has been derived for both Poisson and negative
binomial distribution cases (Clark and Evans 1954;
Thompson 1956; Eberhardt 1967). For the Poisson case,
the probability density function (pdf) of n-th NND
(point-to-event) can be formulated as (Thompson 1956):

pnðrÞ ¼ 2kpre�kpr2 ðkpr2Þn�1

CðnÞ ð3Þ

where r is the distance, n (‡1) is the rank of NND, and k
is the density of individuals. For the negative binomial
case, the pdf of n-th NND (point-to-event) can be for-
mulated as (Eberhardt 1967):

gnðrÞ ¼
2ðkpÞnr2n�1

kn

Cðnþ kÞ
CðnÞCðkÞ 1þ kpr2

k

� ��n�k

ð4Þ

where k is the same as that in NBD model. As k tends to
positive infinity, gn(r) tends to be pn(r). Starting from this
probability distribution, Eberhardt (1967) proposed an
index of non-randomness, which is referred to as Eber-
hardt’s index, to detect the spatial aggregation. Prayag
and Deshmukh (2000) derived the asymptotic distribu-
tion of Eberhardt’s index theoretically.

Event-to-event nearest neighbor distance

The probability distribution model of n-th event-
to-event NND, for either Poisson or negative binomial
case, has not been presented before. Analogously, we
also assume that the spatial distribution pattern satisfy
stationarity and isotropy. The pdf of n-th NND (event-
to-event) can be derived simply by applying Bayes’ rule
and finding the limit of a conditional probability. In
addition, the derivation needs two virtual concentric
circles. In Fig. 1, the two concentric circles of radii r and
Dr are schematically illustrated. The details of the deri-
vation are shown in the Appendix. For the Poisson case,
the pdf of n-th NND (event-to-event) is exactly the
expression in Eq. (3). For the negative binomial case, we
have a new probability distribution model and the pdf of
n-th NND (event-to-event) is
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fnðrÞ ¼
2ðkpÞnr2n�1

kn

Cðnþ k þ 1Þ
CðnÞCðk þ 1Þ 1þ kpr2

k

� ��n�k�1
ð5Þ

It can be easily verified that the distribution fn(r) also
becomes pn(r) when k tends to infinity. In supplementary
materials, probability distribution models pn(r), gn(r) and
fn(r) are schematically plotted for different values of
aggregationparameterkand rankparametern. These three
probability distribution models differ significantly for a
small k, but are indistinguishable when k becomes large.
These relationships are also illustrated as figures there.

Parameter estimation

The aggregation parameter k can be estimated by using
either the moment method or the likelihood method.
From Eqs. (A7–A8) we can see that there is no restriction
on the expectation of event-to-event nearest neighbor
distance but the aggregation parameter k must be larger
than 0.5 for the point-to-event nearest neighbor distance.
As the estimate of parameter k cannot be obtained ana-
lytically, we have to resort to numerical solution. The
alternative approach to estimate aggregation parameter
k via likelihood method is also natural. Although the
maximum-likelihood estimate of k is analytically intrac-
table either, the approximations can be obtained numeri-
cally by maximizing the log-likelihood function.

Applications

In this study, our primary objective is to test the probability
distribution model of n-th NND and estimate the aggre-
gation parameter k from NND. The parameter k is
assumed to be already known in advance. The maximum-
likelihood method is used to estimate the parameter k.

Simulation test

As widely recognized, a careful study of fitting the
probability distribution model to simulated data is
necessary before moving on to empirical data. In this
section, we first test the three probability distribution
models pn(r), gn(r), and fn(r) using simulated point pat-
terns. The first point pattern is generated by the homo-
geneous Poisson point process, which produces a
random point pattern. The second and third point pat-
terns are aggregated and highly aggregated point pat-
terns, which are both generated by Neyman-Scott point
process. The difference between these two aggregated
patterns is the intensity of parent process and the dis-
persion distance of offspring. The study area is a
100 · 100-m square, and a 10-m-wide buffer zone is
chosen to eliminate edge effect. That is to say, randomly
selected sampling points are merely located in the inner
80 · 80-m square, and only individuals within such a
square are selected as focal individuals to obtain the
event-to-event NND. For the purpose of comparison,
the number of randomly selected sampling points equals
to that of individuals in the inner square. Then we fit the
three probability distribution models to samples of
point-to-event and event-to-event NND. Figure 2 shows
the simulated point patterns and the fitted probability
density functions. For random point pattern, all three
probability distribution models fit the nearest neighbor
distances well. For the general aggregated point pattern,
probability distribution models gn(r) and fn(r) that are
derived from NBD can fit the nearest neighbor distances
well. However, pn(r) derived from the Poisson model
does not produce a satisfactory fitting. In Fig. 2, we
merely show the results for n = 3. For other ranks of
NND, such as n = 1, 2, 4, 5, the results are qualita-
tively similar. Based on the fitting results, we note that
the probability distribution models fn(r) can fit spatial
point patterns ranging from highly aggregated to com-
plete random, if the two basic assumptions stationarity
and isotropy of point processes are not significantly
violated. For highly aggregated point pattern, fn(r) per-
forms better than gn(r) in fitting nearest neighbor dis-
tances.

Empirical test

To further test the probability distribution models, we
use a stand-mapping data set of tree species in a tropical
rain forest in Barro Colorado Island (BCI), Panama.
The study area is a 1,000 · 500-m rectangular plot
(50 ha). The spatial patterns of most tree species are
aggregated (Condit et al. 2000; Zillio and He 2010).
Analogously, we also set a buffer zone along the four
edges, and the width is 25 m. For each species, sampling
points are randomly distributed in the inner rectangular
region, and the points’ number equals to the individuals
in such region.

Fig. 1 Schematic illustration of the nearest neighbor distances
from individual to individual. The inner circle (dotted) is just a
virtual one used to derive Fn(r)
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In this study, spatial distribution data of 183 species
with individuals more than 50 in the inner rectangular
region is used. The values of parameter n are chosen as
n = 1, 2, …, 10. The goodness-of-fit is evaluated using
v2-test. The results of fitting are shown in Table 1. For
Poisson case, it is found that fitting pn(r) to either point-
to-event or event-to-event NND cannot pass the v2-test
for most species. Especially, there is no species that can
pass the v2-test when n is larger than 7 and 9, respec-
tively. This result again verifies the argument that most
tree species in BCI are aggregated distributed. Thus, we
will not test the probability distribution model
pn(r) anymore in the following sections.

For the negative binomial case, about two-thirds of
the 183 tree species can pass the v2-test when n = 1, but
this number decreases as n increases. Figure 3 shows the
well-fitted probability distribution models for three
arbitrarily selected tree species in BCI. It is clear that
both gn(r) and fn(r) can fit the nearest neighbor distances
well. Species that pass the v2-test of gn(r) and fn(r) have
some common features: population is widely distributed
and there are not too many small clusters. We further
classified the remaining species into three categories:
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Fig. 2 (Top row) Simulated spatial point patterns (black points) and
randomly distributed sampling points (plus). (Middle row) The
frequency distribution of point-to-event NND (histogram) and the
fitted probability density functions (p3(r) dashed lines; g3(r) solid
lines). (Bottom row) The frequency distribution of event-to-event

NND (histogram) and the fitted probability density functions
(p3(r) dashed lines; f3(r) solid lines). From left to right, each column
corresponds to random, aggregated, and highly aggregated spatial
point patterns

Table 1 Results of v2-test of fitting probability distribution models
pn(r), gn(r), and fn(r) to point-to-event and event-to-event nearest
neighbor distances for 183 Barro Colorado Island, Panama (BCI)
species that have more than 50 individuals in the inner rectangular
area (950 · 450 m)

n Poisson case Negative binomial case

Point-to-event
(fails)

Event-to-event
(fails)

Point-to-event
(fails)

Event-to-event
(fails)

1 161 163 57 63
2 175 177 65 84
3 178 178 73 96
4 179 180 91 103
5 182 180 93 99
6 182 181 101 102
7 183 181 102 99
8 183 181 106 99
9 183 183 103 99
10 183 183 105 104

The number in the table is the total number of species that have not
passed the Chi-square test. The density is assumed to be known, and
the aggregation parameter k is estimated using the maximum likeli-
hoodmethod. The number of bins for Chi-square is 10, and the degree
of freedom is 8. The number of species that pass or fail the Chi square
test may vary slightly when the number of bins is changed
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species that pass the v2-test of gn(r) but not fn(r), species
that pass the v2-test of fn(r) but not gn(r), and species
that neither pass v2-test of gn(r) nor that of fn(r). The
spatial point pattern of these three types of species and
the fitted probability distribution models are shown in
detail in the supplemental materials. It is concluded that
species that are highly aggregated but not widely dis-
tributed cannot pass the v2-test of gn(r), and species with
small clusters and widely distributed single individuals
cannot pass the v2-test of fn(r).

As we know, the major problem of quadrat sampling
is the dependence on quadrat shape and size. Although
the probability distribution models of n-th NND are
thought to be equivalent to the original NBD model, it is
deserved to compare the aggregation index estimated
from quadrat sampling and distance sampling on dif-
ferent spatial scales. In this study, the comparison can be
probably implemented as follows: (1) obtain the samples
of n-th event-to-event NND (n = 1, 2…); (2) compute
the mean MðrnÞ ¼

P
rðiÞn =N ; (3) take the mean as radius

of circular quadrat and randomly throw equally sized
quadrats on the study area; (4) fit NBD model to the
quadrat count data and estimate the aggregation
parameter k the using moment method; (5) fit the
probability distribution model fn(r) to event-to-event
NND and estimate parameter k using the maximum
likelihood method. The reason why we use circular

quadrat is to link the sample scale of quadrat sampling
(area) to sampling scale of distance sampling (distance).
The results for four species that have passed the v2-test
of gn(r) and fn(r) are shown in Fig. 4. For parameter k,
estimated from quadrat sampling, we find the value of
k varies so much as the sample size increases. Some-
times, the detected pattern are changing from aggregated
to random and then regular. However, the value of
parameter k estimated from distance sampling is rela-
tively stable. This result indicates that distance sampling
is not seriously dependent on sampling scales.

Discussion

In this paper, we first showed two discrete probability
distribution models, the Poisson model and the negative
binomial model, of quadrat count data of spatial point
patterns. The two models correspond to complete
spatial random and aggregated spatial point patterns,
respectively (Pielou 1960). Next, we presented two
kinds of NND, point-to-event NND and event-to-event
NND. For complete spatial random point pattern, these
two kinds of NND have the same probability distribu-
tion model denoted as pn(r). For aggregated spatial
point pattern, the probability distribution model of
point-to-event NND has been given a long time ago
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Fig. 3 (Top row) Spatial distributions of three Barro Colorado
Island, Panama (BCI) tree species (Guarea ‘‘fuzzy’’, Unonopsis
pittieri, Coccoloba coronata). (Middle row) The corresponding
frequency distribution of point-to-event NND (histogram) and the

fitted probability density functions (solid lines). (Bottom row) The
corresponding frequency distribution of event-to-event NND
(histogram) and the fitted probability density functions (solid lines)
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(Eberhardt 1967); however, the probability distribution
model of event-to-event NND was firstly presented in
this paper. We denoted these two models as gn(r) and
fn(r). Although the mathematical formulae of gn(r) and
fn(r) look similar, they are two different probability
distribution models and differ remarkably when the
shape parameter k is very small.

Theoretically, the two probability distribution models
are both applicable to all kinds of spatial point patterns
ranging from highly aggregated to complete random, if

the two basic assumptions stationarity and isotropy of
point process are both satisfied. In simulation test, we
found that fn(r) performed better than gn(r) for highly
aggregated point patterns. This phenomenon can be
explained by a simple example. We assume that there is a
random point pattern in a 10 · 10-m square. No doubt,
both fn(r) and gn(r) can fit the NND well. Next, we
extend the study area to a larger 20 · 20-m square and
assume there are no points in the new extended area.
Then, the point pattern is considered to be aggregated in
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Fig. 4 (Left) Spatial distributions of three Barro Colorado Island,
Panama (BCI) species (Beilschmiedia pendula, Guatteria dumetorum,
Coccoloba coronate, Chrysophyllum cainito). (Middle) the change of
aggregation parameter obtained by fitting quadrat count data to
NBD (‘‘o’’) and fitting probability distribution model fn(r) to n-th

event-to-event NND (‘‘+’’). (Right) Log–log relationship between
the mean or expectation of n-th event-to-event NND and the rank of
nearest neighbor, symbols: asterisk the actual mean valueM(rn); plus
the expectation E[rn] for the negative binomial case (Eq. A8); dot the
expectation E[rn] for the Poisson case (Eq. A6)
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the 20 · 20-m square. The new density becomes one-
quarter of the previous one, because density is inversely
proportional to area. Accordingly, the point-to-event
NND increase since the sampling points are always
randomly distributed in the whole study area. In this
process, the spatial aggregation cannot be realisti-
cally reflected in probability distribution model gn(r).
Thus, detecting aggregation from point-to-event NND
becomes unrealistic. However, all measures of event-to-
event NND do not change in the process of area
extension. The estimate of parameter k using probability
distribution model fn(r) will become smaller indicting
that aggregation can be detected. This is the superiority
of fn(r) over gn(r). In an empirical test, we found that
gn(r) and fn(r) were suitable for the majority of tree
species in BCI. Meanwhile, there are still a few tree
species in BCI that cannot pass the v2-test. Our results
are summarized as follows: gn(r) is not suitable for
species that are highly aggregated but not widely dis-
tributed; fn(r) is not suitable for species with both small
clusters and widely distributed single individuals. As we
know, the derivation of both gn(r) and fn(r) have some
common basic assumptions: individuals are distributed
in infinitely large areas (inherit from the assumption of
NBD model); the spatial distribution is invariant with
respect to translations and rotations (stationary and
isotropic). Obviously, these two basic assumptions can-
not be strictly met in reality. Moreover, in the derivation
of gn(r) and fn(r), the n individuals in the circular area
are assumed to be randomly distributed for simplicity.
This assumption is not realistic either. In addition,
samples of higher rank of NND are not reliable because
the edge effect cannot be fully eliminated by setting
a narrow buffer zone. Therefore, fitting gn(r) and fn(r)
to n-th NND both become worse when the order n is
increased. Although the basic assumptions of continu-
ous probability distribution models gn(r) and fn(r) are
much stricter and obtaining a good fitting is not easy,
they are both useful in modeling spatial point patterns.
Especially, we have gotten a new flexible model fn(r).

Spatial pattern of species is the result of different
ecological processes and forces on different spatial scales
(Wiegand and Moloney 2004). Over the last few dec-
ades, a number of methods have been developed to
quantify the aggregation of spatial point patterns (Dig-
gle 2003; Wiegand and Moloney 2004). These methods
use either quadrat sampling or distance sampling. In
earlier methods, the spatial characteristic was usually
summarized as a simple index, and spatial scales are not
considered (Diggle 2003). However, it is not reasonable
to set spatial scales aside when we detect spatial aggre-
gations. The relationship between spatial pattern and
scales are not properly considered until the second-order
statistics were proposed, such as Ripley’s K-function and
L-function etc. (Ripley 1976, 1977, 1988). Over the last
few years, methods based on Ripley’s K-function have
undergone a rapid development and are now being
widely used, especially in plant ecology (Wiegand
and Moloney 2004 and references therein). Like these

second-order statistics, the probability distribution
models gn(r) and fn(r) can also capture the multiscale
spatial characteristic by showing the relationship k vs.
rn. Now we already have many methods to detect spatial
aggregation; however, to our best knowledge, there is no
a generally acceptable criterion to determine the best one
in practice. The best choice depends on the biological
question asked and the quality of field data. For second-
order statistics, such as the commonly used Ripley’s
K-function or the pair-correlation function, the null
model is complete spatial randomness (Ripley 1976,
1977; Bailey and Gatrell 1995; Diggle 2003). The second-
order statistics are usually used to answer the questions
of whether a pattern is random, aggregated, or regular
on some specific spatial scales (Wiegand and Moloney
2004). To compute the second-order statistics, we have
to know the positions of all individuals in the study area.
In other words, the study area must be fully surveyed.
For gn(r) and fn(r), the null model is the ideal aggregated
pattern described by NBD model. They can be used to
answer the question of how aggregated the spatial pat-
tern is on multiple spatial scales. In practice, there is no
need to use all samples of n-th NND to estimate the
parameter k. It means that a partly surveyed study area
is enough. Similarly, we cannot rashly judge which is the
better one between gn(r) and fn(r) in practical applica-
tions, although fn(r) is much flexible than gn(r) theoret-
ically. When gn(r) is used, the sampling points to obtain
samples of point-to-event NND must be randomly dis-
tributed. In some previous studies, this requirement was
basically met through field ecologists’ expertise, so gn(r)
was applicable in detecting spatial aggregation and even
estimating density (Magnussen et al. 2008). Our empir-
ical test also verified this point. In this paper, the new
probability model was only tested using one accessible
data set of tree species. We note that more empirical
tests using other data sets are also necessary in future
work.
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Appendix

To derive the probability distribution model of event-
to-event NND, we also assume that the spatial distri-
bution pattern satisfies stationarity and isotropy. Then
the pdf of n-th NND (event-to-event) can be derived
simply by applying Bayes’ rule and finding the limit of a
conditional probability. Here, we only take the NBD
case as an example to illustrate the derivation. In Fig. 1,
there are two concentric circles of radii r and Dr, and the
center is a randomly selected individual. First, the
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number of individuals in a circle of radius r follows a
negative binomial distribution with mean kpr2. Define a
random variable rn as the n-th NND (event-to-event),
then probability that rn is smaller than r is given by
P(rn < r), which is also the probability distribution
function of rn (denoted by Fn(r)). Now, it is in position
to derive the analytical expression of P(rn < r). We have

The numerator in Eq. (A1) can be approximated by

X1
s¼nþ1

s

1

� �
qð1� qÞs�1

� Cðk þ sÞ
s!CðkÞ 1þ k

kpr2

� ��s

1þ kpr2

k

� ��k

ðA2Þ

where q = Dr2/r2. The formula after the summation in
Eq. (A2) represents the probability that only one
individual is located at the inner circle while other
s � 1 individuals are at the annulus, given there are s
individuals falling in the circle. The basic assump-
tion here is that individuals are randomly distributed
in the outer circle and follow a binomial distribution.
The denominator is relatively simple, which is just
the probability of an individual falling in the inner
circle,

pðx ¼ 1Þ ¼ kpDr2 1þ kpDr2

k

� ��k�1
ðA3Þ

Substituting Eqs. (A2–A3) into Eq. (A1) and evalu-
ating the limit, we can obtain the probability distribu-
tion function:

FnðrÞ¼
2Cðnþ kþ1Þ

rkCðkþ1ÞCðnþ2Þ 1þ k
kpr2

� ��n

1þkpr2

k

� ��k�1

� kpr2k kþnþ1ð ÞF 2
1 2;2þkþn;2þn;

kpr2

kþkpr2

� ��

�ðnþ1Þðkþkpr2Þðkpr2 kþ1ð Þ�nkÞ

�F 2
1 1;1þ kþn;1þn;

kpr2

kþkpr2

� �
ðA4Þ

where F 2
1 is Gauss hypergeometric function. The

expression of Fn(r) is very complex, but it differential
about distance r is relative simple, which is exactly the

probability density function of the n-th NND (event-
to-event),

fnðrÞ ¼
2ðkpÞnr2n�1

kn

Cðnþ k þ 1Þ
CðnÞCðk þ 1Þ 1þ kpr2

k

� ��n�k�1

ðA5Þ

It can be easily verified that Eq. (A5) meets all the
conditions of general probability density functions.
Following the same procedure, the probability density
function of n-th NND (event-to-event) for the Poisson
case can also be derived. The result is exactly
pn(r) shown in Eq. (3).

With the analytical expressions of pn(r), gn(r), and
fn(r), the moments can be simply derived. For Poisson
case, Thompson (1956) presented that the expectation of
n-th NND, either point-to-event or event-to-event, was

E rn½ � ¼
1

k
nð2nÞ!
ð2nn!Þ �

1ffiffiffiffiffiffi
kp
p n0:5 ðA6Þ

The approximation is based on Sterling’s formula,
which holds very well even for small n. For negative
binomial case, the expectations of point-to-event NND
and event-to-event NND are

Point-to-event: E rn½ � ¼
1ffiffiffiffiffiffi
kp
p Cðnþ 0:5Þ

CðnÞ
Cðk � 0:5Þ

ffiffiffi
k
p

CðkÞ
ðk [ 0:5Þ;

ðA7Þ

Event-to-event: E½rn� ¼
1ffiffiffiffiffiffi
kp
p Cðnþ 0:5Þ

CðnÞ
Cðk þ 0:5Þ

ffiffiffi
k
p

Cðk þ 1Þ
ðA8Þ

Other higher-order of moments can also be obtained,
and we do not show all of them here.
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