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Abstract Sequestration by metallothioneins and antioxi-

dant defense are two kinds of important defense mecha-

nisms employed by mollusks to minimize adverse effects

caused by heavy metal contaminants in marine environ-

ment. In the present study, a novel metallothionein gene,

CgMT-III, was cloned from Crassostrea gigas, consisting

of eighteen conserved cysteine residues and encoding a MT

III-like protein with two tandem b domains. The expression

level of CgMT-III transcript induced by zinc was much

higher than that induced by cadmium exposure. It sug-

gested that CgMT-III was perhaps mainly involved in

homeostatic control of zinc metabolism, which was distinct

from previously identified MTs in C. gigas. Among the

tested antioxidant enzymes including superoxide dismutase

(SOD), catalase (CAT), glutathione peroxidase (GPx),

SOD and GPx showed varying up-regulations in a tissue-

specific manner, while CAT activities were inhibited in

both gill and hepatopancreas from C. gigas exposed to

heavy metals. It can be inferred that CgMT-III was mainly

involved in zinc homeostasis, and CgMT-III gene together

with CAT enzyme could be potential biomarkers to indi-

cate heavy metal, especially zinc pollution in marine

organisms.
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Introduction

With the rapid development of modern industry, various

contaminants including both inorganic and organic sub-

stances were discharged into marine environments. Among

these contaminants, heavy metals can be accumulated by the

aquatic organisms and cause many adverse effects on their

physiological reactions (Dovzhenko et al. 2005; Li et al.

1967; Felten et al. 2008; Viselina and Luk’anova 2000;

Sokolova et al. 2005). For example, cadmium (Cd) is a

nonessential heavy metal contaminant that accompanies zinc

mineral, and is released into the environment by mining,

refining and plating processes (Choi et al. 2007). Cadmium

can inactivate many important enzymes by competing the

catalytic sites of other metals (Chang et al. 2009; Bouilly

et al. 2006; Dhavale et al. 1988; Bandyopadhyay et al. 1997),

and induce oxidative stresses which cause damages to many

important biological molecules including lipid, protein,

DNA in aquatic organisms (Dovzhenko et al. 2005; Chappie

1997). In addition, some trace essential metal, such as zinc,

when the concentration surpasses the quantity demanded,

could displace other trace metals and interfere with the

normal metabolism pathways, which would result in
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deleterious effects on fertilization, sexual maturity and

growth of the organisms (Münzinger and Guarducci 1988;

Murphy et al. 2011; Ballatori 2002). In some mineral refin-

eries of Hulu Island in China, waste water was discharged

into the Bohai Sea without strict disposal. Consequently,

marine organisms were faced with pollution from both

cadmium and zinc as their coexistence.

For marine organisms, various defense strategies such as

sequestration, antioxidant defense enzymes, etc., are

employed to minimize the harmful effects of heavy metal

contaminants (Geret et al. 2002, 2003; Jo et al. 2008;

Klaassen et al. 1999; Kovářová and Svobodová 2009; Sato

and Bremner 1993; Manduzio et al. 2004). Metallothio-

neins (MTs) are a super-family of metal-binding proteins

with low molecular weight (6–7 kDa) and involved in

multiple important physiological activities, such as metal

homeostasis, detoxification, and antioxidant protection

(Cols et al. 1999; Marie et al. 2006; Olafson and Thompson

1974; Roesijadi 1992; Wang et al. 2009; Coyle et al. 2002;

Atif et al. 2006; Nordberg and Nordberg 2009). Both

excessive essential (copper, zinc, iron, etc.) and non-

essential (cadmium, mercury, etc.) heavy metals can

induce the expression of MTs, which is primarily regulated

at transcriptional levels (Pulido et al. 1966; Amiard et al.

2006; Bado-Nilles et al. 2008; Palmiter 1987). Presently,

MTs from marine organisms have been proposed as a

useful biomarker for heavy metal contaminants in marine

environment (Amiard et al. 2006; Savva and Li 2000;

Kovářová and Svobodová 2009; Wang et al. 2009; Van der

Broeck et al. 2010; Fang et al. 2009; Liu and Wang 2011).

According to the nomenclature of metallothioneins, MT

proteins have been divided into three classes, fifteen

families among the animal, plant, prokaryote and fungi

kingdoms (Binz and Kagi 1999; Kojima 1991). Despite the

diversity of amino acid sequences in MTs, they are com-

monly structurally analogical with high content of cysteine

residues (up to 30 %) and lack of aromatic amino acids

(Nordberg and Nordberg 2009; Boulanger et al. 1983). The

conserved Cys residues constitute mainly two kinds of

domains in MT proteins: a domain including 11 Cys in an

–NCNCN– or –NCCNCC– array, and b domain containing

9 Cys in –NCNCN or –NCNNCN– motif (Cols et al. 1999;

Boulanger et al. 1983; Furey et al. 1986).

The Pacific oyster, Crassostrea gigas, is a kind of

commercially important mollusk cultivated around the

world. As sedentary, filter feeding, widely distributed

marine bivalves, the oysters are regarded as suitable indi-

cator animals to environmental pollution in many monitor

programs, including the ‘‘Mussel Watch Program’’ initiated

by the USA since 1986. Recently studies reported that

oysters could accumulate heavy metal, especially zinc, to

an extremely high level of body concentration (Cheung and

Wang 2008). And the concentration of zinc in oysters is

detected 10 times higher than that in mussels or clams (Pan

and Wang 2012), which suggests that oysters are perhaps

more suitable to indicate zinc pollution than other mollusk.

To date, three kinds of MT genes have been cloned and

functionally identified from C. gigas (Tanguy and Moraga

2001; Tanguy et al. 2001). In this study, a new kind of MT

cDNA (designated as CgMT-III) was cloned from the

digestive gland subtractive library of C. gigas, encoding a

novel kind of MT protein that was different to previously

identified MT proteins in C. gigas. The expression profiles

of CgMT-III in hepatopancreas of C. gigas stressed by

cadmium and zinc were investigated due to their high

ecological risk to marine environment. Additionally, sev-

eral important antioxidant enzymes, such as superoxide

dismutase (SOD), catalase (CAT), glutathione peroxidase

(GPx), were examined as well in order to investigate the

potential roles of CgMT-III and antioxidant enzymes in

response to heavy metal pollution.

Materials and methods

Animals, metal exposure and tissue collection

Adult C. gigas (averaging 52.3 g in total weight) were

collected from an unpolluted aquaculture farm in Yantai.

They were allowed to acclimate for 8 days in aerated, fil-

tered seawater (19–21 �C, 32 psu, collected from pristine

environment). A mixture of Isochrysis galbana and Chlo-

rella vulgaris Beij was used to feed the oysters after the

seawater was renewed daily.

After acclimatization, all the oysters were divided into

four groups (control and three heavy metal-exposd groups),

each containing three replicates. The first group received

no challenge and was used as the control. The other three

groups were exposed to 20 lg L-1 of Cd (as CdCl2),

50 lg L-1 Zn (as ZnSO4) and a mixture of Cd (20 lg L-1)

and Zn (50 lg L-1), respectively. The concentrations of

Cd and Zn used for the exposure experiment can be found

in certain polluted sites along the coast of the Bohai Sea

(Zhang 2001; Marie et al. 2006). Five oysters from each

group were randomly sampled at 0, 24, 48, 72 h, respec-

tively. The dissected tissues of gill and hepatopancrea were

flash frozen in liquid nitrogen and stored at -80 �C prior to

enzyme assay. A slice of hepatopancreas was subjected to

RNA extraction immediately by using TRIzol� Reagent

(Invitrogen, Cat. #15596-026).

cDNA library construction and EST analysis

A subtractive cDNA library was constructed from the

digestive gland of Pacific oyster C. gigas, using a PCR-

SelectTM cDNA subtraction kit (BD Clontech, Cat. #
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637401). Random sequencing of 200 randomly-selected

positive clones yielded a fragment which was highly sim-

ilar to previously identified metallothionein. This sequence

was then selected for further cloning of the full-length

cDNA of CgMT-III in C. gigas.

Cloning the full-length cDNA of CgMT-III gene

Two gene-specific primers, sense primer P1, P2 (Table 1)

were designed based on the above fragment to clone the

full-length cDNA of CgMT-III. A modified touch down-

PCR (TD-PCR) was performed to amplify the 30 end of

CgMT-III in a Biometra Thermocycler using sense primer

P1 and oligo dT (Table 1). The TD-PCR program was as

following: 94 �C for 5 min, followed by 5 cycles of 5 s at

94 �C, 2 min at 64 �C, 25 cycles of 5 s at 94 �C for, 2 min

at 62 �C. For the second round of PCR, 1 lL of 1:100

diluted PCR product was used as template, P2 and oligo dT

were employed to carry out a semi-nested PCR. The PCR

products were gel-purified and cloned into the pMD19-T

simple vector (Takara Bio, Cat. #D104). After transformed

into the competent cells of E. coli top10, the recombinants

were screened by blue-white color selection in ampicillin-

containing LB plates. Three positive clones were

sequenced in both directions, and the resulting sequences

were verified and subjected to cluster analysis. Primers P3

and P4 (located at 50 and 30 end of CgMT-III, respectively)

were used to verify the clustered sequence.

Multiple alignment and phylogenetic analysis

Searches for nucleotide and protein sequence similarities

were conducted with BLAST algorithm at the National

Center for Biotechnology Information (Altschul et al. 1997).

Multiple alignment of CgMT-III was performed with the

ClustalW Multiple Alignment program (http://www.ebi.

ac.uk/clustalw/). Phylogenetic tree was constructed with

MEGA program (version 3.1) based on amino acid sequen-

ces alignment by using the neighbor-joining method with

1,000 replication in bootstrap test.

RNA extraction and quantification analysis

of CgMT-III mRNA expression

Total RNA was extracted by using TRizol� Reagent (Invit-

rogen, Cat. #15596-026). Two microgram of RQI DNase-

treated total RNA was used for cDNA synthesis with the

M-MLV reverse transcriptase (Promega, Cat. # 9PIM170).

The fluorescent real-time quantitative PCR was per-

formed on an ABI 7500 Real-Time Detection System

(Applied Biosystems) to investigate the mRNA expression

of CgMT-III gene. Gene-specific primers P5, P6 for

CgMT-III (Table 1) were used to amplify a product of

192 bp. A pair of oyster b-actin primers, P7 and P8

(Table 1) were used to amplify a 100 bp fragment to verify

the successful transcription and as an internal control to

calibrate the cDNA template for corresponding samples

(Farcy et al. 2009). The PCR amplifications were carried

out in triplicate in a total volume of 25.0 lL containing

12.5 lL of 29 SYBR Green Master Mix (Applied Bio-

systems, Cat. # 4385617), 4.0 lL of 1:20 diluted cDNA,

l.0 lL of each primer, 6.5 lL of PCR-grade water. The

PCR program was 50 �C for 2 min and 95 �C for 5 min,

followed by 40 cycles of 15 s at 94 �C, 30 s at 60 �C. The

expression level of CgMT-III were analyzed by the com-

parative CT (2-DDCT) method as previously described

(Livak and Schmittgen 2001; Cong et al. 2009).

Enzyme assays

Gills and hepatopancreas were homogenized in liquid

nitrogen, and enzymatic activities of SOD, GPx, CAT and

total protein concentrations were assayed according to the

manufacturer’s protocols (Jiancheng, Nanjing, China, Cat.

# A001-1, A005, A007, A045-3, respectively). All the

enzyme activities were expressed in term of units per mg of

protein (U/mg), where one unit represented the change in

absorbance spectra per milligram protein in 1 min.

Statistical analysis

One-way analysis of variance (ANOVA) followed by

Tukey’s test was used to compare the significance among

the biological data from control and three heavy metal-

exposed groups at each time point (n = 5). All the data

were given in terms of means ± standard deviation (SD).

A p value p \ 0.05 is considered statistically significant.

Table 1 Primers used in the present research

Primer name Sequence (50–30)

Gene cloning

P1 (forward) ACCCTTGCGGATGCACGGAG

P2 (forward) TCTTCTCCTGCATCATCTTTTG

Verifying primers

P3 (forward) CACCTCCAAAATGCCAATC

P4 (reverse) CTGTTTCTATTCTTTCACAAGCA

RT-PCR primers

P5 (forward) ATGTAATTGCGGCGAAACCT

P6 (reverse) TTCACAAGCAAATCTTCTCCTG

b-actin primers

P7 (forward) GCCCTGGACTTCGAACAA

P8 (reverse) CGTTGCCAATGGTGATGA

cDNA synthesis

Oligo (dT) CTCGAGATCGATGCGGCCGCT17

1930 M. Cong et al.
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Results

cDNA cloning and analysis of the CgMT-III

A 349 bp nucleotide sequence representing the full-length

cDNA of CgMT-III was deposited in GenBank under

accession number JF781299. The full-length cDNA con-

sisted of a 50 untranslated region (UTR) of 28 bp, a 30 UTR

of 132 bp and an open reading frame of 189 bp encoding a

polypeptide of 63 amino acids (Fig. 1a) with an estimated

molecular mass of 6.39 kDa and theoretical isoelectric

point of 4.075. The deduced amino acid sequence of

CgMT-III contained 18 Cys residues, and no aromatic

residue was found.

Multiple alignment and phylogenetic analysis

BLAST analysis revealed that CgMT-III matched closely

with previously reported MT family members. For exam-

ple, CgMT-III exhibited 69.4 % identity to Crassostrea

virginica MT IIIA, 67.7 % to C. virginica MT and

C. virginica MT IIIC, 66.1 % to C. virginica MT IIIB,

while less identity to other MTs in C. gigas (B34 %).

Eighteen Cys residues in CgMT-III were totally conserved

in all the selected MT proteins (Fig. 1b). Six –NCNCN–

and two –NCNCNNC– patterns, which could be divided

into two clusters with each containing nine Cys residues,

appeared in the amino acid sequence of CgMT-III. Based

on the distribution of Cys residues, CgMT-III exhibited the

typical characteristics of b-domain in MT protein (Otvos

and Armitage 1980).

A phylogenetic tree was constructed based on the amino

acid sequences of selected MTs with the neighbor-joining

method. MT proteins from C. gigas (CAB85588, CAC

48045, CAB64869) were first clustered together into a sub-

branch which clustered with MTs from B. thermophilus,

and then clustered with another two MT proteins from

C. gigas (CAC82788, CAK22381). However, CgMT-III

was clustered with MT proteins from the eastern oyster

C. virginica (AAQ23919, AAQ23917, AAQ23918,

AF506978), and fell into the MT III subgroup (Fig. 1c).

Quantitative analysis of CgMT-III gene expression

after heavy metal exposure

In the Cd-exposed group, significant enhancement of

CgMT-III expression occurred at 48 h compared with the

control (7.9-fold, p \ 0.05), while no significant difference

was observed at other time points. For the Zn-exposed oys-

ters, significant increments of CgMT-III expression were

observed at 24 and 72 h (6.3-fold, 235.8-fold, p \ 0.05) as

compared to the control. However, for the oysters in

Cd ? Zn-exposed group, no significant difference in the

expression of CgMT-III transcript was observed compared

with that of the control group throughout the sampling time

points (Fig. 2).

Effect of Cd and Zn exposures on enzyme activities

Antioxidant enzymes including SOD, GPx, and CAT were

examined in gill and hepatopancrea tissues. For SOD

activities in gills, there was no significant difference between

each treatment during the exposure period (Fig. 3a). How-

ever, significant up-regulation (p \ 0.05) of SOD activity in

hepatopancreas of the Zn-exposed oysters was observed at

24 h post exposure. Slight increments of SOD activities were

found in the Cd- and Cd ? Zn-exposed treatments; never-

theless, no significant difference existed between each heavy

metal-exposed group and the control (Fig. 3b).

As for GPx activities in gills, Zn exposure significantly

induced the up-regulation (p \ 0.05) at 72 h. Significant

increments were also recorded in Cd ? Zn-exposed group

in comparison to that of the control group at 24 and 72 h

(p \ 0.05) (Fig. 4a). However, no significant difference in

GPx activity was observed in the Cd-exposed group com-

pared with that of the control group. Similarly, significant

increment occurred in hepatopancreas of oysters exposed

to Cd ? Zn at 72 h (p \ 0.05). However, no significant

changes in GPx activity were observed from either Cd- or

Zn-exposed group.

Contrary to the up-regulation trends of SOD and GPx

activities, inhibition of CAT activities was observed in both

gills and hepatopancreas (Fig. 5). In gills, significant

decrease in CAT activity was detected in Cd- and Cd ?

Zn-exposed groups (p \ 0.05) at 24 h, and in the Zn- and

Cd ? Zn-exposed groups (p \ 0.05) at 48 h. As time pro-

gressed on, CAT activities in gills of all treatments recovered

to the control level at 72 h. In hepatopancreas, significant

down-regulations were observed in Cd- and Zn-exposed

groups at 24 h (p \ 0.05). However, there was no significant

difference between the exposed and control groups at other

time points, though significant decrement occurred in CAT

activity of the Zn-exposed group compared with those of the

Cd- and Cd ? Zn-exposed groups at 72 h.

Discussion

Due to the rapid industrial development, heavy metal

contaminants, such as cadmium, have been increasingly

aggravated in the marine and coastal environments. Mol-

lusks (mussel, oyster, clam, etc.) have been used as sentinel

organisms for heavy metal monitoring in neritic regions

(Dumbauld et al. 2009; Geret et al. 2003; Liang et al.

2004). Presently, MTs and antioxidant enzymes are well

acknowledged as important biomarkers to heavy metal
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contaminants (Ivanina et al. 2008; Baraj et al. 2011; Choi

et al. 2008).

In the present study, the cDNA encoding CgMT-III gene

was cloned from the Pacific oyster C. gigas. The 18 con-

served Cys residues in the deduced amino acid sequence of

CgMT-III constitute two tandem b domains, and showed

high identities with CvMT III isoforms. It suggested that

CgMT-III was probably a new member of the MT-III

protein, distinct from previously identified MT proteins in

C. gigas. It has been suggested that MT proteins containing

two b domains mainly play a housekeeping function in

metal-regulation of physiological metals (Cols et al. 1999;

Narula et al. 1995). Zinc is an important essential metal for

the organisms (Klaassen et al. 1999), however, excessive

zinc can cause toxicity to the marine organisms (Münzinger

and Guarducci 1988). Fortunately, MTs have the capacity

to bind excessive zinc and facilitate the host to keep a

normal concentration of internal zinc (Klaassen et al.

1999). Hepatopancreas of mollusks are often used as the

target tissue in ecotoxicology due to the strong detoxifi-

cation function (Le Pennec and Le Pennec 2001). In this

study, the quantitative PCR data indicated that CgMT-III

gene in hepatopancreas was induced significantly by zinc

and slightly by cadmium. It was suggested that CgMT-III

was mainly involved in zinc homeostasis and kept the

oysters from toxic effect of excessive zinc. In addition,

cadmium is a non-essential heavy metal, which has adverse

effects on the physiological responses of mollusks

(A)

(B)

(C) 

JF781299 CgMT-III - MP I E T N C T C A N G A C N C G E T C Q C K T T D C A C A I C N N P C G C T E - 40 

AAQ23917 CvMTIIIA - MP F E T S C T C A N G A C E C G E N C Q C K T T D C A C T T C N V T C S C T E - 40 

AF506978 CvMT - MP F E T N C T C A N G A C E C G E N C Q C K T T D C A C T T C N V T C S C S K - 40 

AAQ23918 CvMT IIIB - MP F E T S C T C A N G A C E C G E N C Q C K T T D C A C T T C N V T C S C S K - 40 

I   * * * * * * * * *    *  *     
JF781299 CgMT-III - T E C N C G A E C Q C P E T C S C K T C K A - 62 

AAQ23917 CvMTIIIA - S E C K C G A D C N C S A E C K C Q T C K S - 62 

AF506978 CvMT - S E C K C G A D C N C S A E C K C Q T C K S - 62 

AAQ23918 CvMT IIIB - S E C K C G A D C N C S A E C K C Q T C K S - 62 

I  *  *   * * * * *

 CAC48045 CgMT

 CAB64869 CgMT
 CAB85588 CgMT

 CAC82788 CgMT3 
 CAE11860 Bathymodiolus thermophilus MT

 CAD56896 Bathymodiolus sp. FD-2002 MT-10 
 CAE11859 Bathymodiolus thermophilus MT 

 AAQ23918 CvMT IIIB

CgMT-III JF781299 

 AF506978 CvMT

 AAQ23918 CvMT IIIB

 AAQ23917 CvMTIIIA 78
99

100 

34
100

75

46
100

34

Fig. 1 a Nucleotide sequence

of CgMT-III cDNA from

C. gigas and its deduced amino

acid sequence. The start and

stop codens are in bold.

Conserved Cys residues are

shaded. Residues containing

Cys in –NCNCN– pattern are

underlined and those in

–NCNNCN– pattern are boxed.

b Multiple alignment of selected

MT proteins and the deduced

amino acid sequence of CgMT-

III. The selected sequences

include Crassostrea virginica
MT IIIA (AAQ23917), C.
virginica MT IIIC

(AAM90258), C. virginica MT

IIIB (AAQ23918). Identical

residues are shaded dark gray
and similar residues are shaded

light gray. The conserved Cys

residues were indicated with

‘‘asterisk’’. Cys residues in

–NCNCN– patterns are

underlined and those in

–NCNNCN– pattern are boxed.

c A phylogenetic tree

constructed based on the

selected MTs. One thousand

bootstrap trials were run by

using the neighbor-joining

algorithm embedded in MEGA

program version 3.1. The

number associated with each

internal branch was the local

bootstrap probability, which

was an indicator of confidence
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(Sokolova et al. 2005; Viselina and Luk’anova 2000; Wu

et al. 2010). The slight increment of CgMT-III implied that

CgMT-III was perhaps involved in cadmium detoxification

as well. Moreover, mixture of zinc and cadmium exposure

had no significant effect on the expression of CgMT-III,

indicating that Zn and Cd probably performed antagonistic

effects in C. gigas because of the chemical similarity

between them (Daka and Hawkins 2006). It was consistent

with previous studies that zinc was a cadmium antagonist

in mollusks (Daka and Hawkins 2006; Hemelraad et al.

1987).

So far, several MT genes have been isolated from

C. gigas. It was reported that mRNA expressions of

CgMT1 and CgMT2 were both increased significantly

(from 7- to 11-fold) upon cadmium stress, while remained

no change towards zinc stress. However, CgMT3 exhibited

a very low inducibility to zinc or cadmium stress compared

with CgMT1 and CgMT2, which was presumed that

CgMT3 had little physiological functions under metal

exposure or expressed in some particular developmental

stages in the Pacific oysters (Marie et al. 2006). Compared

with CgMT1, CgMT2 and CgMT3, it can be inferred that

CgMT-III was mainly responsible for the regulation of zinc

homeostasis rather than other MT genes in C. gigas.

Therefore, CgMT-III could be used as the potential bio-

marker for zinc pollution in C. gigas.

Besides sequestration by MT proteins, a series of anti-

oxidant enzymes are also involved in the detoxification by

eliminating reactive oxygen species (ROS) frequently

produced by excessive heavy metal contaminant in mol-

lusks (Jo et al. 2008; Geret et al. 2002, 2003; Manduzio
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Fig. 2 Temporal mRNA expression profiles of CgMT-III gene after

exposure to Cd, Zn, Cd and Zn mixture

Fig. 3 SOD activities in tissues of gills (a) and hepatopancreas (b) of

oysters after exposure to Cd, Zn, Cd and Zn mixture. Data were

expressed as mean ± SD (n = 5). Different letters denote values that

are significantly different (p \ 0.05) and the columns that share a

same letter are not significantly different (p [ 0.05)

Fig. 4 GPx activities in tissues of gills (a) and hepatopancreas (b) of

oysters after exposure to Cd, Zn, Cd and Zn mixture. Data were

expressed as mean ± SD (n = 5). Different letters denote values that

are significantly different (p \ 0.05) and the columns that share a

same letter are not significantly different (p [ 0.05)
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et al. 2004). Among the antioxidant enzymes, SOD, CAT

and GPx play important roles in scavenging free radicals

(Valavanidis et al. 2006). SOD catalyzes the dismutation of

superoxide anion into hydrogen peroxide, which is in turn

reduced by CAT into water and molecular oxygen. GPx

neutralizes peroxides including hydroperoxides and

organic peroxides into water or stable alcohols (Geret et al.

2003). In this study, a transient increment was observed in

SOD activity of hepatopancreas in Zn-stressed group,

while no significant change occurred in other stressed

groups. It was suggested that SOD activity was more

sensitive to zinc rather than cadmium exposure. Similar

results were also reported in other organisms previously

(Olin et al. 1995; Chakraborty et al. 2007). Perhaps it could

be explained that zinc was an essential component of

copper/zinc SOD, and addition of external zinc was con-

venient to stabilize copper/zinc SOD and enhance SOD

enzyme activity (Kajihara et al. 1988; Jing et al. 2007). For

GPx activity, significant up-regulations were observed in

gills of the Zn-stressed group at the end of the experiment.

Several studies have found that low concentration of zinc

could enhance GPx activity in many marine organisms,

such as mussels and trout, which was similar to the present

result (Franco et al. 2006). Although the single exposure of

cadmium exerted no significant effect on GPx activity, the

combined exposure of cadmium and zinc increased GPx

activity in both gills and hepatopancreas. It was probably

ascribed to the positive influence of zinc, because it was

known that exposure to cadmium impacted little on zinc

effect on GPx activity (Rainbow 1997; Langston and Be-

bianno 1998; Daka and Hawkins 2006; Jihen et al. 2011).

However, unlike to the up-regulation of SOD and GPx,

inhibited CAT activities were observed in either gills or

hepatopancreas tissues of the stressed oysters. The similar

phenomenon was also reported in nemertean Cephalothrix

hongkongiensis and oysters towards heavy metal exposure

(Wu et al. 2010; Andersen et al. 2006). In a word, SOD and

GPx activities exhibited tissue specific up-regulation

towards zinc or mixed stresses of cadmium and zinc,

however, CAT in both gills and hepatopancreas showed

inhibited activities in a more sensitive manner. Previous

studies have reported various results about the heavy metal

toxicity on mollusks. For example, cadmium/copper

caused no change in ROS production in mussel (Goméz-

Mandikute and Cajaraville 2003). But sodium arsenite

could inhibit the activities of CAT and induce oxidative

stress in the gills of Lamellidens marginalis (Chakraborty

et al. 2010). Whatever the antioxidant enzyme activities

were up- or down-regulated, the heavy metal contamina-

tion exerted adverse effect on some immune parameters of

mollusks, and the responding capability depended on the

concentration of the metal (Girón-Pérez 2010). Similarly,

the variations of the antioxidant enzymes activity in the

present study revealed that 20 lg L-1 of cadmium or

50 lg L-1 of zinc affected the antioxidant system of

Pacific oysters, and the related antioxidant enzyme could

be used as sensitive biomarker to indicate the heavy metal

contamination.

In conclusion, a novel kind of zinc-inducible metallo-

thionein gene has been cloned from C. gigas and desig-

nated as CgMT-III. The expression of CgMT-III transcript

appeared to be more sensitive to zinc exposure than cad-

mium, and was presumed to be mainly involved in

homeostatic control of zinc metabolism. Among the tested

antioxidant enzymes, SOD and GPx showed varying

increased activities to zinc or cadmium exposure, while

CAT activities of the heavy metal stressed groups

decreased sensitively compared with that of control group.

Therefore, it can be inferred that CgMT-III gene was a

potential biomarker for zinc pollution and CAT was suit-

able to be used as an enzyme biomarker to present the

adverse effect of heavy metal in oysters.
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Fig. 5 CAT activities in tissues of gills (a) and hepatopancreas (b) of

oysters after exposure to Cd, Zn, Cd and Zn mixture. Data were

expressed as mean ± SD (n = 5). Different letters denote values that

are significantly different (p \ 0.05) and the columns that share a

same letter are not significantly different (p [ 0.05)
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