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a b s t r a c t

Little is known about the estrogenic activities of polycyclic aromatic hydrocarbons (PAHs) and the

underlying mechanisms on estrogenic activities are still unclear. Molecular docking and quantitative

structure–activity relationship (QSAR) were used to understand the relationship between molecular

structural features and estrogenic activity, and to predict the binding affinity of PAHs to estrogen

receptor a (ERa). From molecular docking analysis, hydrogen bonding as well as hydrophobic and p
interactions were found between PAHs and ERa. Based on the docking results, appropriate molecular

structural parameters were adopted to develop a QSAR model. Five descriptors were included in the

QSAR model, which indicated that the estrogenic activity was related to molecular size, van der Waals

volumes, shape profiles, polarizabilities and electropological states were significant parameters

explaining the estrogenicity. Comparatively, the developed QSAR model had good robustness,

predictive ability and mechanistic interpretability. Moreover, the applicability domain of the model

was described.

& 2012 Elsevier Inc.. All rights reserved.
All rights reserved.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous envir-
onmental pollutants (Cao et al., 2011; Dachs et al., 2011). Humans
and animals are exposed to PAHs from environmental (air, soil,
water), dietary and occupational sources, and also from cigarette
smoke (vanSchooten et al., 1997; Watson and Brandt, 2003).
Hydroxy-substituted polycyclic aromatic hydrocarbons (HO-
PAHs) are formed from the corresponding PAHs in the presence
of cytochrome P450 enzymes (CYPs) in humans and in animals, as
well as chemically in the atmosphere. Many PAHs are carcino-
genic in human and laboratory animals and the principal concern
regarding exposure to PAHs is that they increase the risk of cancer
(Hayakawa et al., 2007; Ellsworth et al., 2008).

As for PAHs, antiestrogenic activity was observed in the yeast
assay system (Tran et al., 1996) and estrogenic activity was found in
MCF-7 cells (Charles et al., 2000). The structural similarity of several
HO-PAHs to 17b-estradiol, which binds to human estrogen receptor
(ER), might account for their estrogenic or antiestrogenic activities.
A common structure of estrogenic compounds is a phenol basic
structure with a hydrophobic moiety at the para-position and no
bulky group at the ortho-position (Nishihara et al., 2000).
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Several classes of hydroxy-substituted aromatic hydrocarbons
have been linked to estrogenicity (Schultz et al., 1998; Schultz
and Sinks, 2002). Previous studies have been conducted to
evaluate the estrogenic and antiestrogenic activities of HO-PAHs
such as hydroxybenzo[a]pyrene (HO-BaP). Nishihara et al. (2000)
tested 12 HO-BaPs isomers (1- through 12- HO-BaPs) using the
competition binding assay to ERa, and found that 1-, 2-, 3-, and
9-HO-BaPs were estrogenic and 8-HO-BaPs was antiestrogenic.
Besides, 2-hydroxyfluorene (2-HO-Fl), 2- and 3-hydroxyphenan-
threnes, and 1-hydroxypyrene (1-HO-Py) and n-propyl-p-hydro-
xybenzoate in cigarette smoke condensate were also determined
as estrogenic compounds (Hayakawa et al., 2007). These results
suggested that the activities of HO-PAHs depend strongly on their
structures. Hence, it is important to clarify whether these com-
pounds have any estrogenic effects. However, little is known
about the estrogenic activities of PAHs/HO-PAHs and the under-
lying mechanisms on the estrogenic activities are still unclear.

The experimental methods for determining xenoestrogens
summarized by the Organisation for Economic Co-operation and
Development (OECD), include methods such as the yeast-based
assay (Routledge and Sumpter, 1997), E-Screen (Soto et al., 1995),
the MCF-7 cells proliferation test (Gierthy et al., 2003), the rat
uterotrophic assay (Kanno et al., 2001) and the Hershberger assay
(Yamasaki et al., 2004). However, the number of exhaustive
virtual chemicals is much bigger than the number of estrogenic
chemicals that we could test. Therefore, given the factors such as
time and expense as well as the large number of compounds that
may bind to the receptors, there appeared increasing interests in
developing computational methods (in silico) to predict affinity of
compounds with the receptors, including the methodology of
quantitative structure–activity relationships (QSARs) (Du et al.,
2008; Valadares et al., 2007).

According to the OECD and the US Environmental Protection
Agency (US EPA) (OECD, 2007), QSARs are promising tools for
modeling and predicting estrogenic activities of xenoestrogens.
The mechanistic interpretation is of paramount importance as
QSAR models with a clear mechanistic underpinning usually have
high credibility, succinctness, and definite boundaries for their
applicability domain (Chen et al., 2008). Thus, the molecular
structural descriptors selected for constructing QSAR models
should be based on analysis of the underlying mechanisms, and
facilitate a mechanismtic interpretation.

The initial step for chemicals in the mode of action is their
binding to an intracellular receptor (Kavlock et al., 1996). Hence,
molecular docking and virtual screening have become an integral
part of many modern structure-based computational simulations
of chemicals (Martinez et al., 2008). Docking methodologies
utilize the knowledge of three-dimensional structure of a receptor
in an attempt to optimize the bound ligand or a series of
molecules into the active site. Combinational use of docking with
QSAR can provide more information on the interaction between
the ligand and the receptor (Sippl, 2002; Soderholm et al., 2005).
For this purpose, molecular docking was employed in some
previous studies to observe the interactions between ligands
and receptors (Celik et al., 2008; Amadasi et al., 2009). For
example, Celik et al. (2008) found that selected polychlorinated
biphenyls (PCBs), plasticizers and pesticides could bind in the
steroid binding cavity, interacting with at least one of the two
hydrophilic ends of the steroid binding site.

In this study, molecular docking was performed to define a
model for the comprehension of the binding interactions between
PAHs and ERa, which facilitated the selection of appropriate
molecular parameters to characterize the interactions in the QSAR
studies. Based on the docking analysis, molecular structural
parameters were selected and adopted to construct a QSAR
model. From the developed QSAR model, critical molecular
structural features related to their estrogenic activities were
identified. Furthermore, the developed model was externally
validated and the applicability domain was depicted.
2. Materials and methods

2.1. Data compilation and the chemical domain

The relative binding affinity (RBA) of 36 PAHs and HO-PAHs to hERa were

determined by Hayakawa et al. using the yeast two-hybrid assay (Hayakawa et al.,

2007). Then the RBA values were converted into the form of log RBA, which ranged

from �3.00 to �0.39 log unit.

2.2. Molecular docking

The binding mode for the compounds to ERa was studied by CDOCKER, which

has been incorporated into Discovery Studio 2.5 (Accelrys Software Inc.) through

the Dock Ligands protocol. CDOCKER is an implementation of the docking tool

based on the CHARMm force field that has been proven to be viable (Wu et al.,

2003). The crystal structure of ERa (PDB entry code: 1�7 R) was extracted from

the Brookhaven Protein Database (PDB http://www.rcsb.org/pdb). In CDOCKER,

random ligand conformations are generated through molecular dynamics, and a

variable number of rigid-body rotations/translations are applied to each confor-

mation to generate the initial ligand poses. The conformations are further refined

by grid-based simulated annealing in the receptor active site, which makes the

results accurate. In addition, the electrostatic potentials of the ligand binding site

for ERa were calculated by the electrostatic protocol that has been incorporated

into Discovery Studio (Ver. 2.5). From the docking analysis, insights into the

interactions between the ligands and the receptor were gained, which facilitated

the selection of appropriate molecular parameters to characterize the interactions

in the subsequent QSAR studies.

2.3. Mechanism consideration and molecular structural parameters selection

As proposed by the OECD guideline (OECD, 2007), QSAR models should be

developed based on the mechanism of action. It was hypothesized that the

estrogenic activities of PAHs were dependent on the following two processes:

(a) The partition of the compounds between water and the biophase, and (b) The

interaction between the ligands and the receptor ERa. Molecular structural

descriptors that describe hydrophobic, electronic and steric properties of mole-

cules were selected to describe the interaction between PAHs and ERa, which was

calculated using the DRAGON 2.1 (Todeschini and Consonni, 2000) and Gaussian

09 packages (Frisch, 2009).

All the initial geometries of the compounds were optimized by semi-empirical

method PM3, then optimized at the hybrid Hartree-Fock DFT B3LYP/6-31 G(d,p)

level. Solvent (water) effects were taken into consideration implicitly, including

the integral equation formulation of the polarized continuum model (IEFPCM). The

frequency analysis was performed on the optimized geometries to ensure that the

systems had no imaginary vibration frequencies.

The optimized molecular structures were imported to Dragon 2.1 (Talete Srl,

Milano, Italy), and 1481 diverse descriptors (different functional groups, constitu-

tional, geometrical, topological, Whim 3D, electronic, etc.) for each molecule were

calculated. The quantum chemical descriptors, including the energy of the highest

occupied molecular orbital (EHOMO), the energy of the lowest unoccupied mole-

cular orbital (ELUMO), the most positive hydrogen atom in the molecule (qHþ), and

the most negative formal charge in the molecule (q�) were computed by Gaussian

09 programs (Frisch, 2009). The quantum chemical descriptors like EHOMO, ELUMO,

qHþ , and q� were proved successful in many QSAR studies for characterizing

intermolecular electrostatic interactions (Colosi et al., 2006). Forward stepwise

regression was performed to screen significant molecular descriptors, as also done

by Morales et al. (2006).

2.4. Model development and validation

The 36 PAHs and HO-PAHs were randomly divided into a training set (80%)

and a validation set (20%), as listed in Table 1. Partial least squares (PLS) regression

was performed for the model development as PLS can analyze data with strongly

collinear, noisy and numerous predictor variables (Wold et al., 2001).

Simca-S (Version 6.0, Umetri AB & Erisoft AB) was employed for the PLS

analysis. Simca-S adopts leave-many-out cross validation to determine the

number of PLS components (A). Cross-validation simulates how well a model

predicts new data, and gives a statistical QCUM
2 (the fraction of the total variation of

the dependent variables that can be predicted by all the extracted components) for

the model. The PLS analysis was performed repeatedly so as to eliminate

redundant molecular structural parameters, as done in our previous studies

(Li et al., 2009; Li et al., 2010a, b).

http://www.rcsb.org/pdb


Table 1
Logarithm of the observed and predicted binding affinity (log RBA) of the considered compounds and molecular descriptors in the developed QSAR model.

Compounds log RBA E1s MATS1v L3s Mor12v RDF020e

Obs. Pred. Residuals

2-OHFl �0.893 �0.766 �0.127 0.452 0.126 0.090 0.495 1.877

2-OHPh �0.635 �0.525 �0.110 0.421 0.120 0.000 0.526 1.655

Frt �2.301 �2.617 0.316 0.271 0.065 0.000 0.539 1.515

3-OHFR �0.684 �0.790 0.106 0.374 0.128 0.000 0.593 2.446

Py �2.398 �2.542 0.144 0.264 0.073 0.019 0.351 3.206

1-OHPy �0.959 �1.064 0.105 0.345 0.126 0.025 0.408 3.317

BaA �2.301 �2.305 0.004 0.339 0.061 0.000 0.612 1.849

1-OHBaA �1.328 �1.352 0.024 0.319 0.114 0.000 0.497 2.453

2-OHBaAa
�0.863 �1.136 0.273 0.376 0.114 0.001 0.716 1.864

3-OHBaA �0.642 �0.618 �0.024 0.450 0.114 0.001 0.704 1.936

4-OHBaA �0.532 �0.875 0.343 0.417 0.114 0.001 0.734 1.989

5-OHBaAa
�1.237 �1.217 �0.020 0.360 0.114 0.000 0.685 1.973

9-OHBaA �0.387 �0.574 0.187 0.453 0.114 0.001 0.678 1.943

10-OHBaA �0.530 �0.539 0.009 0.463 0.114 0.001 0.717 1.919

11-OHBaA �1.569 �1.332 �0.237 0.354 0.114 0.001 0.733 2.535

BcPh �2.699 �2.357 �0.342 0.312 0.061 0.000 0.433 2.443

1-OHBcPh �3.000 �3.085 0.085 0.270 0.114 0.189 0.673 2.503

2-OHBcPha
�0.733 �1.134 0.401 0.356 0.114 0.001 0.530 2.492

3-OHBcPh �0.462 �0.496 0.034 0.445 0.114 0.000 0.505 2.592

4-OHBcPh �0.678 �0.625 �0.052 0.431 0.114 0.001 0.532 2.643

5-OHBcPh �1.357 �1.018 �0.339 0.366 0.114 0.000 0.481 2.562

Ch �2.523 �2.410 �0.113 0.326 0.061 0.000 0.629 1.842

1-OHCh �0.900 �0.847 �0.053 0.414 0.114 0.001 0.686 1.858

2-OHCha
�0.391 �0.577 0.185 0.440 0.114 0.001 0.564 2.289

3-OHCh �0.860 �1.060 0.200 0.390 0.114 0.000 0.745 1.898

4-OHCh �1.921 �1.563 �0.358 0.324 0.114 0.001 0.710 3.568

6-OHCha
�1.046 �1.382 0.336 0.318 0.114 0.001 0.531 2.133

10-OHBbFR �0.939 �0.779 �0.160 0.418 0.120 0.000 0.738 2.653

3-OHBkFR �0.824 �0.851 0.027 0.424 0.120 0.007 0.835 2.208

9-OHBkFR �0.688 �0.410 �0.278 0.476 0.120 0.000 0.810 1.893

1-OHBaPa
�0.728 �0.895 0.167 0.371 0.120 0.001 0.544 1.721

3-OHBaP �0.405 �0.682 0.277 0.404 0.120 0.000 0.571 1.641

8-OHBaP �0.425 �0.588 0.163 0.410 0.120 0.001 0.499 1.760

4-OHBePa
�0.932 �1.238 0.307 0.329 0.120 0.000 0.650 0.922

11-OHBgCh �0.706 �0.818 0.112 0.417 0.110 0.001 0.522 3.291

13-OHBgCh �0.870 �0.926 0.056 0.389 0.110 0.001 0.446 2.896

a Compounds in the validation set.
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The model predictability was evaluated by external validation. The performance

of external validation was characterized by the external explained variance (QEXT
2 )

and the standard errors (SE), which were described as following (Schüürmann et al.,

2008).

Q2
EXT ¼ 1�

XnEXT

i ¼ 1

ðyi�ypred
i Þ

2=
XnEXT

i ¼ 1

ðyi�yEXT Þ
2

ð1Þ

SE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i ¼ 1

ðyi�ypred
i Þ

2=n�1

vuut ð2Þ

where yi and ypred
i are the observed and predicted values for the i-th compound,

respectively. yEXT is the average response value of the validation set. n and nEXT

stand for the number of compounds in the training and validation sets, respectively.

2.5. QSAR applicability domain

The Applicability Domain (AD) is determined from the Williams plot of

standardized residuals versus leverage (Hat diagonal) values (hi). The leverage

approach for defining the AD has been described in detail previously (Eriksson

et al., 2003; Tropsha et al., 2003). The leverage (hi) value of a chemical in the

original variable space is defined as:

hi ¼ xT
i ðX

T XÞ�1xiði¼ 1,. . .,nÞ ð3Þ

where xi is the descriptor vector of the considered compound and X is the model

matrix derived from the training set descriptor values.

The warning leverage value (hn) is defined as 3(Kþ1)/n, where K is the number

of predictor variables. When the h value of a compound is lower than hn, the

probability of accordance between predicted and actual values is as high as that

for the compounds in the training set. A chemical with hi4hn will reinforce the

model if the chemical is in the training set. But such a chemical in the validation
set implies that it is structurally distant from compounds in the training set and its

predicted data may be unreliable. However, this chemical may not appear to be an

outlier because its residuals may be low. Thus the leverage and the standardized

residual should be combined for the characterization of the AD.
3. Results and discussion

3.1. Structural analysis of docking

The docking view of three representative HO-PAHs (1-HO-BaP,
3-HO-BaP, and 8-HO-BaP) in the binding site of ERa is shown in
Fig. 1. Hydrogen bonding, hydrophobic and p interactions are
observed to be the characteristic interactions between the HO-PAHs
and ERa. H-bond formation was found to occur between the
hydroxyl oxygen of the HO-PAHs and the hydrogen of the imidazole
of His524 (Fig. 1B), and H-bonds were also found between the
hydroxyl oxygen of the HO-PAHs and the carbonyl oxygen of
Glu353 which strengthens the binding interaction (Fig. 1C).

Acting as an ‘anchor’, the hydrogen-bonding intensely deter-
mines the 3D space position of the benzene ring in the binding
pocket, and facilitates the hydrophobic interaction of the HO-
PAHs with the side chain of Leu346, Leu387, Ala350, Phe404,
Met421, and Ile424 (Fig. 1). As shown in Fig. 1C, there are also s–p
interactions between the benzene rings of the HO-PAHs and
Phe404.

Fig. 2 shows the electrostatic potential of the ligand-binding
site for ERa. The binding site has positive potentials. It can thus be



Fig. 1. Docking views of (A) 1-OHBaP, (B) 3-OHBaP, and (C) 8-OHBaP and

hydrophobic interaction between HO-PAHs and ERa in the binding site. Green

dotted line shows H-bonds. Carbon is colored in grey, oxygen red, and nitrogen

blue. Ligand bond, Non-ligand bond, Hydrogen bond

and its length, Non-ligand residues involved in hydrophobic contacts,

Corresponding atoms involved in hydrophobic contacts. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)

Fig. 2. Electrostatic potential of the ligand binding site for ERa. Further details are

needed, like the meaning of the various colors. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version

of this article.)

Table 2
Physical–chemical meanings of the descriptors used in the developed QSAR model.

Descriptor Chemical meanings

E1s 1st component accessibility directional WHIM index/

weighted by atomic electrotopological states

MATS1v Moran autocorrelation—lag 1/weighted by atomic van der

Waals volumes

L3s 3rd component accessibility directional WHIM index/

weighted by atomic electrotopological states

Mor12v 3D-MoRSE—signal 12/weighted by atomic van der Waals

volumes

RDF020e Radial Distribution Function—2.0/weighted by atomic

Sanderson electronegativities

Fig. 3. Plot of observed versus predicted log RBA values for the training and

validation.
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concluded that the negative potentials of the molecules facilitate
them to bind with ERa.

3.2. Development and validation of the QSAR model for the logRBA

Five descriptors with F statistics43.84 (significance level¼0.05)
were selected as the predictive variables for model development.
The molecular structural descriptors are listed in Table 2, along with
their physical–chemical meaning.

PLS analysis with the log RBA as the dependent variable and
the molecular structural parameters as predictor variables
resulted in the following optimal QSAR model:

logRBA¼25:18þ6:90E1sþ1:91� 101MATS1v26:53L3s28:97

�10�1Mor12v24:35� 10�2RDF020e

nðtraining setÞ ¼ 29, A¼ 2, R2
¼ 0:941, Q2

CUM ¼ 0:846,SE

¼ 0:188ðtraining setÞ,

nðvalidation setÞ ¼ 7, Q2
EXT ¼ 0:578, SE¼ 0:905ðvalidation setÞ, po0:0001

where p is the significance level.
The predicted log RBA values and residuals for the compounds

selected, are listed in Table 1. The R2 value of the QSAR model was
0.941, indicating a good goodness-of-fit of the model. QCUM

2 of the
QSAR is as high as 0.846, implying good robustness of the model.
The differences between R2 and QCUM

2 (0.095) did not exceed 0.3,
indicating no over-fitting in the model (Golbraikh and Tropsha,
2002). As shown in Fig. 3, the predicted log RBA values were
consistent with the observed values for both the validation and
training sets. The model revealed acceptable predictability with
QEXT

2
¼0.578, SE¼0.905. In summary, the developed QSAR model

shows satisfactory performance.

3.3. Applicability domain of the developed QSAR model

The distribution of residuals is shown in Fig. 4. Application of
the Kolmogorov–Smirnov test for normality (at the 95% confi-
dence level) confirms that the distribution of residuals is a
distinctive bell-shaped pattern associated with a normal distribu-
tion (mean¼0.05, standard deviation¼0.20), which implies that
the residuals are non-systematic and the applicability domain of
the developed QSAR model can be visualized by the Williams plot.
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As shown in the Williams plot (Fig. 5), hi values of all the
compounds in the training and validation sets were lower than
the warning value (hn

¼0.621), and all the compounds in both the
training and validation sets were in the domain. 1-OHBcPh in the
training set was found to have large leverage values (h4hn). This
chemical was predicted correctly, indicating that the developed
Fig. 4. Distribution of the residuals for log RBA values.

Fig. 5. Plot of standardized residuals versus leverages. Dash lines represent 72.5

standardized residual, dotted line represents warning leverage (hn
¼0.621).

Table 3
VIP values and PLS weights for the optimal PLS model.

VIP Wnc[1] Wnc[2]

E1s 1.506 0.703 0.147

MATS1v 1.298 0.605 0.289

L3s 0.693 �0.313 �0.346

Mor12v 0.664 0.146 �0.876

RDF020e 0.352 �0.142 0.243

Table 4
Comparison with current QSAR models.

No. Endpoint Algorithma Goodness-of-fit, robustness and predict

Training set

n K R2 QCUM
2

1 log RBA kNNn 61 185 0.889 0.79

2 log RBA BP-ANNn 132 49 0.920 0.71

3 log RBA HQSARnn 130 NM 0.756 0.58

4 log RBA PLSnnn 29 5 0.941 0.84

Note. The bold-faced values were not listed in the references and calculated for comparis

defined as the ratio of the molar concentration of E2 to that of the competing chemi

multiplied by 100.
a The transparency of different statistical methodology were asterisked: n

¼ lower t
b n and m are the numbers of compounds in the training and validation sets, resp

coefficient between observed and predicted values; QCUM
2 is the fraction of the total

components, QEXT
2 is squared correlation coefficient for the validation set. ‘‘NM’’ means

c Y and N denote the model is assessed with or without AD discussion, respectivel
QSAR model has good extrapolation ability. For all the compounds
in the training and validation sets, their standardized residuals were
smaller than 2.5 standard deviation units (2.5s), and there were no
outliers for the developed QSAR model. Thus, the developed QSAR
model can be used to predict the log RBA of PAHs and HO-PAHs.

3.4. Mechanistic implications of the developed QSAR model

The developed PLS model extracted 2 PLS components which
were loaded primarily upon 5 predictor variables. Values of the
variable importance in the projection (VIP) and PLS weights (Wn)
are listed in Table 3. The Wn values can be used to estimate how
the predictor variables and the response variables combine in the
projections (PLS components), and how they relate to each other.

The first PLS component was loaded primarily on the 3 descrip-
tors, E1s, MATS1v and L3s. (Table 3). E1s and L3s belong to the WHIM
descriptors and are weighted by atomic electrotopological states
(Todeschini and Consonni, 2000). E1s remarkably governs logRBA

since its VIP is the largest among all the predictor variables. MATS1v

is a 2D autocorrelation descriptor that is weighted by atomic van
der Waals volumes (Roy and Kadam, 2006). Wn[1] and the
coefficients in the developed QSAR model indicate that E1s and
MATS1v are positively correlated with the log RBA values, whilst the
L3s was negatively correlated with the log RBA values. The observa-
tion is reasonable since MATS1v correlates with qHþ positively
(r¼0.955, po0.001), and PAHs with large qHþ values tend to form
Hydrogen bonding easily, leading to large log RBA values.

The second PLS component also extracts 3 descriptors, L3s, Mor12v

and RDF020e. Mor12v belongs to 3D-MoRSE descriptors, which is the
representation of the 3D structure of a molecule and is weighted by
atomic van der Waals volumes (Gasteiger et al., 1996). RDF020e is a
RDF descriptor, which could provide information about bond lengths,
ring types, planar and nonplanar systems, atom types and molecular
weight (Ferreira et al., 2009). RDF020e is weighted by atomic
Sanderson electronegativities (Todeschini and Consonni, 2000). The
negative Wn[2] and coefficient of Mor12v in the QSAR model indicated
the positive correlation between Mor12v and log RBA, and the log RBA

is correlated with RDF020e positively. In general, the current QSAR
model indicated the log RBA value was related to molecular size, van
der Waals volumes, shape profiles and reactivity parameters such as
polarizabilities and electropological states.

3.5. Comparison with other QSAR models

In Table 4, the current QSAR model was compared with 3 pub-
lished QSAR models for RBA to the ER. Asikainen et al. (2004)
ivityb ADc References

Validation set

m QEXT
2 RMSE

0 22 0.740 0.680 N Asikainen et al. (2004)

0 NM NM NM N Marini et al. (2005)

5 23 0.150 1.088 N Shi et al. (2001)

6 7 0.578 0.905 Y This study

on using the supplementary data. Estrogenic activity is recorded as the RBA, which

cal required to decrease radiolabeled E2-receptor binding by 50%, which is then

ransparency, nn
¼medium transparency, and nnn

¼higher transparency.

ectively; K is the number of molecular descriptors; R2 is the squared correlation

variation of the dependent variables that can be predicted by all the extracted

it was not mentioned in the reference.

y.
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employed the kNN method and 185 molecular structural descriptors
to develop a QSAR model. The Asikainen model has good robustness
and predictivity (QLOO

2
¼0.790, QEXT

2
¼0.740), however it is difficult to

interpret the model since the involvement of so many descriptors. A
BP-ANN model was well developed by Marini et al. (2005), with
QLOO

2
¼0.710. Nevertheless the ANN is like a black box, which does

not facilitate mechanism interpretations (Liu et al., 2006). Further-
more, external validation was not mentioned. Shi et al. (2001)
developed QSAR models using HQSAR methods. For the HQSAR
model, QLOO

2
¼0.585, QEXT

2
¼0.150, RMSE¼1.008, indicative of low

robustness and poor external predictivity. All the 3 comparative
QSAR models did not discuss ADs.
4. Conclusion

Hydrogen bonding, hydrophobic and p–p interactions
between ligands and ERa govern the estrogenic activities of the
PAHs/HO-PAHs. Comparatively, the developed QSAR model has
good robustness, predictive ability and mechanism interpretabil-
ity. Compounds with higher E1s and MATS1v values tend to
have higher estrogenic activity. The model can be applied to
predict the estrogenic activity of other PAHs/HO-PAHs. Compre-
hension of the binding interactions between the ligands and the
receptor through docking analysis is necessary for development
of mechanism-based QSAR models.
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