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Abstract

Based on the continuous observation of soil respiration and environmental factors in a maize ecosystem from late April to late

September in 2005, the spatial and temporal variation of soil respiration and their controlling factors were analyzed. There was a

significant spatial pattern for soil respiration at the plant scale and higher soil respiration rates tended to occur near the maize plant

during the growing season. On one measurement moment, root biomass (B) in soil collars exerted significant influence on the spatial

pattern of soil respiration under the relatively homogeneous environmental conditions. A linear relationship existed between soil

respiration rate and root biomass

SR ¼ aBþ b: (1)

At daily scale, the coefficient a and b in Eq. (1) fluctuated because soil temperature (T) markedly reduced the intercept (b) of the linear
equation and significantly increased its slope (a). Based on this, we developed

SR ¼ aebT Bþ cT þ d. (2)

Eq. (2) indicated that increasing soil temperature ameliorated the positive relationship between soil respiration and root biomass in the

daily variation of soil respiration. At seasonal scale, parameter a, b and c in Eq. (2) were affected mainly by soil moisture (W), soil

temperature and net primary productivity (NPP), respectively. Thus, we developed

SR ¼ ðaW þ bÞecT Bþ ðdNPPþ eÞT þ f (3)

to estimate soil respiration during the growing season. Eq. (3) demonstrated that soil temperature, soil moisture, root biomass and NPP

combined affected soil respiration at season scale, and they accounted for 78% of the seasonal and spatial variation of soil respiration

during the growing season. Eq. (3) not only took into account the influence of soil temperature and moisture, but also incorporated biotic

factors as predictor variables, which would lead to an improvement in predictive capabilities of the model. Moreover, Eq. (3) could

simulate instantaneous soil respiration rates from different sampling points and at different temporal scales, so it could explain not only

the temporal variation of soil respiration, but also its spatial variation. Although this model might not be broadly applicable, the results

suggested that there was significant spatial heterogeneity in soil respiration at the plant scale and root biomass dominated the small-scale

spatial patterns of soil respiration. Thus, the models of soil respiration should not only take into account the influence of environmental

factors, but also incorporate biotic factors in order to scale-up the chamber measurements of soil respiration to ecosystem level.
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1. Introduction

The soil is a major biospheric reservoir for carbon (C),
containing globally twice as much C as the atmosphere and
three times as much as vegetation (Granier et al., 2000).
Soil respiration, which originates from autotrophic root
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respiration and heterotrophic microbial respiration in the
rhizosphere and the bulk soil, provides the main carbon
efflux from terrestrial ecosystems to the atmosphere and is
therefore an important component of the global carbon
balance (IPCC, 1996; Buchmann, 2000; Schlesinger and
Andrews, 2000). Small changes in soil respiration across
large areas can produce a great effect on CO2 atmospheric
concentrations and provide a potential positive feedback
between increasing temperature and enhanced soil respira-
tion that may ultimately accelerate global warming (Grace
and Rayment, 1999; Schlesinger and Andrews, 2000;
Sánchez et al., 2003; Rodeghiero and Cescatti, 2005).
Therefore, detailed information on soil respiration and its
controlling factors is critical for constraining the ecosystem
C budget and for understanding the response of soils to
changing land use and global climate change (Lindroth
et al., 1998; Buchmann, 2000; Tufekcioglu et al., 2001; Lee
et al., 2004).

Soil respiration for a specific ecosystem can be char-
acterized by its magnitude and its temporal and spatial
variability (Fang et al., 1998). The rate of soil respiration is
controlled primarily by the rate of CO2 production by
biota within the soil, but is modified by factors influencing
the CO2 movement out of the soil (Raich and Schlesinger,
1992; Tufekcioglu et al., 2001). Generally, soil temperature
and soil moisture are considered the most influential
environmental factors controlling soil respiration. These
factors interact to affect the productivity of terrestrial
ecosystems and the decomposition rate of soil organic
matter, thereby driving the temporal variation of soil
respiration (Wiseman and Seiler, 2004). Soil respiration
also exhibits high levels of spatial heterogeneity, especially
across small spatial scales in forest, grassland and farmland
ecosystem at different time scales (Xu and Qi, 2001;
Franklin and Mills, 2003; Maestre and Cortina, 2003). In
order to accurately estimate C budgets in target ecosys-
tems, we must be able to account for small-scale spatial
variation in soil respiration (Maestre and Cortina, 2003;
Adachi et al., 2005). Methods in quantifying spatial
variation in soil respiration are limited and proved to be
difficult (Rayment and Jarvis 2000; Tang and Baldocchi,
2005). The heterogeneity of vegetation coverage, root
distribution, major environmental factors and soil proper-
ties contributes to the spatial variation of soil respiration
(Xu and Qi, 2001; Maestre and Cortina, 2003; Epron et al.,
2004; Tang and Baldocchi, 2005).

Researchers have developed data sets and processed
models which are used to scale up chamber measurements
of soil respiration to the ecosystem and larger scales (Raich
and Schlesinger, 1992; Fang et al., 1998; Maestre and
Cortina, 2003; Reth et al., 2004; Melling et al., 2005). These
models typically use soil temperature (Fang et al., 1998;
Buchmann, 2000; Janssens and Pilegaard, 2003), soil
moisture (Davidson et al., 1998; Epron et al., 2004; Sotta
et al., 2004) as well as their interaction (Tufekcioglu et al.,
2001; Lee et al., 2002; Tang and Baldocchi, 2005) for large-
scale soil respiration estimates. However, whereas soil
temperature and moisture are good predictors of the
temporal variation of soil respiration, they are inadequate
to explain the spatial variations of soil respiration within a
site and between sites (Xu and Qi, 2001; Tang and
Baldocchi, 2005). The spatial upscaling of soil respiration
from field measurements to ecosystem levels will be biased
without studying its spatial variation (Tang and Baldocchi,
2005). Therefore, it is necessary to incorporate both
temporal and spatial variation of soil respiration into the
model in order to scale-up the chamber measurements of
soil respiration to ecosystem level (Xu and Qi, 2001).
Cropland amounts to about 12% of the earth’s surface

(Verma et al., 2005), and there is a general agreement that
many agricultural ecosystems have the potential to
sequester large amounts of C and support enhancing C
sequestration in the soil (Freibauer et al., 2004; Smith,
2004). However, C dynamics has been less studied in
agricultural ecosystems as compared with other ecosys-
tems. In this study, we investigated the effects of
environmental factors, root biomass and net Primary
Productivity (NPP), soil characteristics and measurement
positions on soil respiration in a maize (Zea mays L.)
ecosystem during the growth season in 2005. Specifically,
the objectives of this study were: (1) to characterize the
spatial variation of soil respiration in a maize ecosystem,
and to relate this spatial variation to environmental
conditions; (2) to address the relative influence of soil
temperature, soil moisture, fine root biomass, NPP and soil
characteristics in explaining the variation of soil respiration
at different temporal scales; and (3) to develop a model
incorporating biotic factors as predictor variables to
estimate reliably soil respiration and specifying the spatial
and temporal variation of soil respiration in a maize
ecosystem.

2. Materials and methods

2.1. Study site

The study was conducted in a spring maize ecosystem
located on Jinzhou Agricultural Ecosystem Research
Station (411090N, 1211120E), which belongs to Institute of
Atmospheric Environment, China Meteorological Admin-
istration. The selected crop type was rainfed spring maize,
which is the main crop type, and it was sown and harvested
in early May and late September, respectively. The field
was under till management and N fertilizer was around
300 kgNha�1.
The region has a temperate zone monsoon climate with a

mean annual temperature of about 9.1 1C and an annual
precipitation of about 568.8mm. The mean temperature
during the growing season is 20.1 1C. The study site is
relatively flat with slopes o31 and the elevation is 17m.
The soil type is typical brown soil, with a pH value of 6.3,
organic matter content from 0.6% to 0.9% and total
N 0.069%. The analysis data apply to Ap horizon at depths
of 0–30 cm.
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2.2. Soil respiration measurements

Soil respiration rates were measured monthly during the
growing season (from May to September) in 2005 using a
soil chamber (LI-6400-09, Li-Cor, Inc., Lincoln, NE)
connected to a portable infrared gas analyzer (IRGA,
LI-6400, Li-Cor, Inc., Lincoln, NE). To minimize soil
surface disturbances, the chamber was mounted on PVC
soil collars sharpened at the bottom. The soil collars were
inserted into the soil to about 1 or 2 cm and installed one
day before the measurements. The plants grew in rows with
spacing of 60 cm and the plant distance within rows was
30 cm. To assume that a radial gradient in root biomass
persisted on space scale, there would be obvious difference
in root biomass in these soil collars at different distances
from the plant. Therefore, according to this hypothesis, 15
collars, each with a height of 4.5 cm and a diameter of
11 cm, were placed at different distances from plants in
order to investigate the spatial variation in soil respiration.
According to the distance from the plants, the measure-
ment positions could be divided into 3 groups: near a plant
(1–5 cm from a plant), inter-plants (8–15 cm from the
plant) and inter-rows (20–30 cm from the plant). Five
collars were placed in each of the 3 positions for each of
the 7 measurement periods. Soil respiration rates were
measured every hour from 6:00 to 18:00 at clear days. A
short sampling period, ranging from 1 to 3min at each
collar in accordance with the CO2 concentrations inside the
chamber, was used in order to complete sampling from the
whole 15 points as quickly as possible and to minimize soil
temperature variation over the sampling period.
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Fig. 1. Mean soil respiration rates of three measurement positions during

maize growing season in 2005. Significant differences among measurement

positions (after paired t-tests) are denoted by asterisks: **Po0.01 and

***Po0.001. Error bars represent 71 SE (n ¼ 5).
2.3. Measurements of environmental factors

Soil temperature was measured simultaneously with soil
respiration using a copper/constantan thermocouple pene-
tration probe (LI-6400-09 TC, LiCor) inserted in the soil to
a depth of 10 cm in the vicinity of the soil collars. Soil water
content (0–12 cm and 0–20 cm depth, based on as soil
volume) in the vicinity of the soil collars was monitored
with a portable sensor (Diviner2000, Sentek, Australia).
Both soil temperature and moisture were measured
continuously in the same area as soil respiration measure-
ments.

The plant aboveground biomass was measured by
clipping 5 maize plants at intervals of 20 d from the
beginning of May to the end of September. At the same
time root biomass was measured by taking five soil blocks
(15 cm wide� 30 cm long� 30 cm deep). Plant above-
ground and root biomass were oven dried at 80 1C for
48 h and weighed. The weight difference of total biomass
between the two sampling periods was the NPP. In order to
evaluate the effect of root biomass on soil respiration, soil
samples up to 30 cm were excavated from each soil collar
using a corer of 10 cm diameter after the soil respiration
measurements. Each sample was washed by 0.2mm mesh
steel screen and live roots picked by hand. Sorted roots
were weighed after drying at 80 1C to a constant mass.
The soil samples of 30 cm depth in each soil collar were

analyzed for soil water content (Oven-drying method),
total C (Walkley–Black wet oxidation technique, Nelson
and Sommers, 1982) and soil nitrogen (Kjeldahl method,
Bremner, 1960).
2.4. Statistical analysis

Differences between measurement positions (near plants,
inter-plants and inter-rows) in soil respiration were
evaluated with one-way ANOVA. Linear regression was
used to evaluate the relationships between soil respiration
rates and dry root weights. Nonlinear regression analyses
were used to describe the relationships between parameters
in equations and environmental factors at different
temporal scales. Significant differences for all statistical
tests were evaluated at the level a ¼ 0:05. All the statistical
analyses were performed by using the SPSS 11.0 package
(SPSS, Chicago, IL, USA).
3. Results and discussion

3.1. Spatial variations of soil respiration

The spatial variability of soil respiration rates among the
15 sampling points in the plot was relatively high, with a
coefficient of variation of 43% on June 5, 28% on June 28,
55% on July 28, 50% on August 28 and 53% on September
22. There was a significant spatial pattern for soil
respiration of the maize ecosystem in 2005. Higher soil
respiration rates tended to occur near the maize plant
during the growing season (Fig. 1). Soil respiration emitted
generally at the following sequence measurement positions:
near the plants4inter-plants4inter-rows. Additionally,
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Root biomass in soil collars (gm-2)

0 20 40 60 80 100

So
il 

re
sp

ir
at

io
n 

(μ
m

ol
m

-2
s-1

)

0

1

2

3

4

5

6

7

8

13#

12#

Fig. 2. Relationship between soil respiration rate and root biomass in soil

collars at 6:00 on July 28. The lines represent linear regression (R2 ¼ 0:73,
ignoring data of point 12, 13).
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the temporal variation of soil respiration between rows
collars was less pronounced than that within rows collars.

At present, the dynamic closed-chamber infrared gas
analyzer system is used widely to measure soil respiration,
such as LI-6400. Portable chamber measurements provide
a useful tool to study spatial pattern of soil respiration
(Tang and Baldocchi, 2005). In order to accurately estimate
soil respiration, the spatial variations in biotic factors
should been taken into account because of the unique
spatial gradients of plant arrangement and root distribu-
tion in plantations and farmland ecosystems. However, the
positions of chambers or soil collars were not described in
detail (Lohila et al., 2003; Cao et al., 2004; Gough and
Seiler, 2004; Wiseman and Seiler, 2004). In this study, we
arranged 15 soil collars according to the distance from the
plants in each measurement in order to describe statistically
the spatial variability of soil respiration.

In previous research, the similar small-scale spatial
patterns of soil respiration have been described in a series
of ecosystems. For example, Fang et al. (1998) observed
that CO2 effluxes from the soil under palmetto were
significantly higher than that from the open floor. Pangle
and Seiler (2002) observed significantly greater soil
respiration rates near the base of pine seedlings in
comparison to rates away from the seedlings. Wiseman
and Seiler (2004) also reported mean soil respiration rates
were consistently higher near the tree in plantation loblolly
pine. And, higher values of soil respiration were also
recorded in the vicinity of trunks than in the middle of the
inter-rows (Epron et al., 2004).

It is apparent from our research and the researches cited
above that there is likely significant spatial heterogeneity in
soil respiration within a site and between sites at different
space scales. Thus, in order to accurately estimate soil
respiration, the arrangement of soil collars and the spatial
variation in biotic factors and soil features should been
taken into account, which remain a challenging yet critical
area for future research (Maestre and Cortina, 2003).

3.2. Effect of root biomass on soil respiration

Microclimate and soil characteristics had no significant
difference among plots across a single site at the same
observation time and there were no significant correlations
between soil respiration, soil temperature, soil moisture,
soil C and total nitrogen (N) content (Table 1). Correlation
Table 1

The correlation coefficients of soil respiration rate to environmental factors am

Date Tsoil at 10 cm depth (1C) Soil moisture at 10 cm depth (%

June 5 �0.272 0.235

June 28 0.332 �0.489

July 28 0.149 �0.395

August 28 0.135 0.078

September 22 �0.201 �0.288

��Correlation is significant at the 0.01 level (2-tailed).
analysis revealed that fine root biomass in soil collars was
significantly related to soil respiration rates across a single
site at one measurement moment (Table 1), indicating soil
respiration differed in plots with greater and less root
biomass under the same environmental conditions, which
were similar to previous reports (Maier and Kress, 2000;
Pangle and Seiler, 2002; Wiseman and Seiler, 2004; Jia
et al., 2005).
Fig. 2 shows soil respiration rates at different sampling

locations plotted against root biomass in soil collars at 6:00
on 28 July. There was a significant linear relationship
between soil respiration rate and root biomass (R2 ¼ 0:73,
Po0.001) ignoring the data from point 12 where root
biomass seemed to be abnormally high and the data from
point 13 where soil respiration rate was abnormally high
(Fig. 2). Similarly, we configured the linear relationship
existing between soil respiration rate and root biomass
from 7:00 to 18:00 on 28 July

SR ¼ aBþ b, (10)

where SR is the soil respiration rate (mmolm�2 s�1), B is
root biomass in the soil collars (gm�2), a and b are
parameters and they were shown in Table 2.
On one measurement moment, soil respiration increased

with increase in root biomass (Eq. (10)), while microclimate
and soil characteristic had no significant differences among
ong plots across a single site at the same observation time

) Root biomass (gm�2) Total C (%) Total N (%) C:N

0.834�� �0.358 �0.492 0.103

0.714�� 0.425 0.574 0.572

0.918�� 0.672 �0.265 0.613

0.795�� 0.434 0.520 �0.511

0.850�� �0.351 �0.693 �0.156
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Table 2

Regression equations between soil respiration rate and root biomass from

6:00 to 18:00 on July 28

Time Regression equation

SR ¼ abþ b
r2 Soil

temperature at

10 cm depth

(1C)

Soil moisture

at 10 cm

depth (%)
a b

6:00 0.0885 �0.4839 0.730 19.8 34.9

7:00 0.0866 �0.3298 0.706 19.0 34.9

8:00 0.0909 �0.2549 0.673 18.3 34.9

9:00 0.1000 �0.2324 0.692 19.3 34.8

10:00 0.1025 �0.3072 0.737 21.4 34.8

11:00 0.0983 �0.0728 0.689 23.7 34.9

12:00 0.1160 �0.4122 0.697 25.3 34.9

13:00 0.1195 �0.3742 0.705 26.5 35.1

14:00 0.1268 �0.7169 0.713 27.4 35.2

15:00 0.1282 �0.8339 0.730 27.9 35.2

16:00 0.1281 �0.8156 0.742 27.3 35.2

17:00 0.1322 �1.0059 0.730 27.6 35.2

18:00 0.1294 �0.8742 0.734 27.0 35.2

Table 3

Values of coefficients a, b, c and d of the equation SR ¼ aebT Bþ cT þ d

between soil respiration rate and root biomass and soil temperature on

June 4, June 28, July 28, August 28 and September 22, 2005

Date Regression equation SR ¼ aebT Bþ cT þ d r2

a b c d

June 5 0.1022 0.0381 0.0807 �0.3459 0.94

June 28 0.0341 0.0540 �0.0379 1.8813 0.84

July 28 0.0422 0.0401 �0.0563 0.829 0.93

August 28 0.0214 0.0387 �0.0170 1.0225 0.85

September 22 0.0389 0.0069 0.0165 0.4292 0.74
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measurement points across a single site, indicating root
biomass exerted significant influence on the spatial pattern
of soil respiration under the same environmental condi-
tions. The result was consistent with previous reports about
spatial variation of soil respiration for terrestrial systems
(Maier and Kress, 2000; Stoyan et al., 2000; Pangle and
Seiler, 2002; Wiseman and Seiler, 2004). Generally, a radial
gradient in total root biomass likely persisted through a
typical timber management rotation (Wiseman and Seiler,
2004). Within this radial gradient, greater root biomass
existed near the plant than away from the plant, and root
respiration decreased with increasing distance from a plant.

3.3. Effects of root biomass in soil collars and soil

temperature on soil respiration

From Table 2, it was clear that coefficient a and b in
Eq. (10) fluctuated at daily scale. Correlation analysis
indicated that the daily changes in soil temperature at
10 cm depth explained differences in coefficient a and b of
the linear equation. Soil temperature markedly influenced
the effect of root biomass on soil respiration by reducing
the intercept (b) of the linear equation and increasing
significantly its slope (a)

a ¼ 0:0423e0:04T ;R2 ¼ 0:905; po0:001, (20)

b ¼ �0:0572T þ 0:8488;R2 ¼ 0:533; p ¼ 0:005. (30)

Substituting Eqs. (20) and (30) into (10), an equation for
estimating soil respiration at daily scale can be developed
as

SR ¼ aebT Bþ cT þ d. (4)

By the same analysis, we found that soil respiration on
June 5, June 28, August 28 and September 22 could be
fitted using Eq. (4) and parameters a, b, c and d were shown
in Table 3. Eq. (4) clearly demonstrated that soil
respiration responded positively to changes in root biomass
in soil collars. Furthermore, these responses would be
impacted by soil temperature at daily scale. In other words,
soil temperature ameliorated the positive relationship
between soil respiration and root biomass in soil collars.

3.4. Effects of root biomass, soil temperature, soil moisture

and NPP on soil respiration at seasonal scale

In order to develop a model of soil respiration at
seasonal scale, the environmental factors that affected the
parameter a, b, c and d in Eq. (4) must be determined
during the growing season. Regression analysis was used to
examine the influence of environmental factors (soil
temperature, soil moisture, shoot biomass, root biomass,
total biomass, NPP, soil total C and total N content) on
the parameter a, b, c and d in Eq. (4). We found that soil
moisture was the best predictor of parameter a, and that
soil temperature was the best predictor of parameter b and
NPP was the driving factors of parameter c. However,
there were no environmental factors that significantly
affected parameter d

a ¼ �1:7063W þ 0:6392;R2 ¼ 0:702, (5)

b ¼ 0:0009e0:1599T ;R2 ¼ 0:975, (6)

c ¼ �0:0034NPPþ 0:0639;R2 ¼ 0:864. (7)

Substituting Eqs. (5) and (7) into (4) and ignoring Eq. (6)
because parameter b was inherently the coefficient of soil
temperature, a simplified equation for estimating soil
respiration can be developed as

SR ¼ ðaW þ bÞecT Bþ ðdNPPþ eÞT þ f , (8)

where W was soil moisture (%), a, b, c, d, e and f are
parameters to be determined.
Fitting the field data to Eq. (8) reached a good

agreement between observed and predicted soil respiration
rates from different sampling points and different temporal
scales (Fig. 3), the squared correlation coefficient was 78%
(n ¼ 518). Most of the temporal and spatial variability in
soil respiration could be explained by the variations in soil
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Fig. 3. Predicted soil respiration rates plotted against observed values.
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temperature, soil moisture and associated live root biomass
and NPP defined in Eq. (8).

According to Eq. (8), we could simulate instantaneous
soil respiration rates, which could explain not only the
temporal variation of soil respiration, but also the spatial
variation of soil respiration. Eq. (8) not only took into
account the influence of soil temperature and moisture, but
also incorporated biotic factors as predictor variables,
which would lead to an improvement in predictive
capabilities of the model. The biotic factors have also been
shown to have an effect on soil respiration; on the one
hand, respiring roots directly below the measurement
chamber exerts significant influence on soil respiration
since root respiration is an integral part of soil respiration
(Hanson et al., 2000), on the other hand, root exudates
from assimilating production and root litter allocated into
the soil during the growing season enhance the soil
respiration by stimulating microbial growth and activity
(Lohila et al., 2003). Therefore, it is dangerous to predict
soil respiration just according to soil temperature and
moisture when changes in root biomass can confound the
temperature dependence of soil respiration (Janssens and
Pilegaard, 2003). In addition, NPP was another factor
influencing soil respiration during the growing season of
maize. NPP may be the most important factor controlling
soil biota and belowground processes at the ecosystem
scale (Wardle, 2002). There was strong evidence that rates
of plant production and soil respiration were linked
processes (Raich and Tufekcioglu, 2000). Root respiration
was likely to be sensitive to seasonal changes in NPP,
because root respiration largely depended on the amount
of photosynthates translocated from the aboveground part
of the plant (Högberg et al., 2002; Curiel-Yuste et al.,
2004). Moreover, NPP could provide the inputs to the soil
of aboveground litter and belowground organic detritus
(Raich and Potter, 1995). Thus, the incorporation of biotic
factors (root biomass, NPP) into Eq. (8) might have more
biological functions for evaluating the spatial and temporal
variation of soil respiration on agricultural sites.
Soil total C and total N content were not significantly

correlated with soil respiration at the plant scale during
growing season. Mineral soil carbon represented potential
carbon substrate sources for microbes and could accord-
ingly affect microbial activity (Wang et al., 2002). Gough
and Seiler (2004) reported that mineral soil carbon
explained a small amount of variance of soil respiration
in loblolly pine plantations. However, in this study soil
properties in collars may not be good indicators of soil
respiration for two reasons. First, soil properties may be
more homogeneous as the impact of tillage practice in
maize ecosystem. Second, soil total C and total N did not
fluctuate remarkably during growing season. Russell and
Voroney (1998) reported that less than 2% of the observed
variance in soil respiration in a boreal aspen forest was
explained by soil organic matter quantity sampled directly
below measurement chambers.

3.5. Features and limitations of the model

Eq. (8) could simulate instantaneous soil respiration
rates from different sampling points and different temporal
scales, so it could not only explain the temporal variation
of soil respiration, but also explain the spatial variation of
soil respiration. Temporal patterns of soil respiration have
been simulated by the continuous records of temperature,
moisture and other variables (Fang et al., 1998; Buchmann,
2000; Janssens and Pilegaard, 2003). However, the spatial
difference of soil respiration within a site and between sites
is often not explained by climatic variables (Tang and
Baldocchi, 2005). By taking advantage of the unique
spatial gradients of root distribution in maize ecosystem
to study the spatial variation in soil respiration, this study
determined that root biomass in soil collars exerted
significant influence on the spatial pattern of soil respira-
tion. Thus, biotic factors were incorporated into the model
as predictor variables, so it could explain the spatial and
temporal variation of soil respiration within a site during
growing season.
The model may be suitable for farmland ecosystems and

uniform plantations and may not be broadly applicable in
natural ecosystems. In this study, it was assumed that root
biomass dominated the distribution of soil respiration, and
this relationship was expressed by Eq. (10). The terrain was
relatively flat and soil properties were more homogeneous
as the impact of tillage practice in maize ecosystem.
Otherwise, the other vegetation was less under maize
plants. Thus, root biomass exerted significant influence on
the spatial variation of soil respiration assumed the
influence of vegetation communities, soil properties and
moisture content on the spatial variability of soil respira-
tion was negligible. Fig. 3 indicated that these assumptions
were adequate. However, these conditions may not be met
in some natural ecosystems because of the spatial variation
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of vegetation under storey plants and surface soil features.
Stoyan et al. (2000) ascribed soil respiration concentrated
around the trunk to higher soil water content as a result of
stem flow in poplars plantation. Pangle and Seiler (2002)
found the spatial pattern of soil CO2 efflux between plots
was most influenced by differences in soil nitrogen and pine
root biomass in a loblolly pine stand on a single day.
Maestre and Cortina (2003) highlighted the spatial varia-
tion of both vegetation and surface soil features affecting
soil respiration rates in semiarid ecosystems.
4. Conclusions

Our results give clear indications that there is significant
spatial heterogeneity in soil respiration at the plant scale
and root biomass dominates the small-scale spatial pattern
of soil respiration. This phenomenon also suggests that the
spatial variation in biotic factors and soil features should
been taken into account in order to accurately estimate soil
respiration. We suggest that interactions among soil
temperature, soil moisture, root biomass and NPP largely
control the temporal and spatial variation in soil respira-
tion during the growing season. This strongly suggests that
the models of soil respiration should not only take into
account the influence of environmental factors, but also
incorporate biotic factors in order to scale-up the chamber
measurements of soil respiration to ecosystem level, which
could undoubtedly lead to an improvement in predictive
capabilities of the model.
Acknowledgements

We thank Dr. Ensheng Weng, Dr. Yuhui Wang, Dr.
Yanling Jiang, Ms. Jian Song, Dr. Bingrui Jia, Dr. Li zhou,
Dr. Fengyu Wang, Dr. Xu Wang, Dr. Yijun Li and Dr.
Yunlong Wang for their help during the experiments. Dr.
Xuhui Zhou of the University of Oklahoma also provided
many helpful suggestions. This work was jointly supported
by the National Key Project for Basic Research
(2006CB400502) and the Knowledge Innovation Programs
of the Chinese Academy of Sciences (KSCX2-SW-133).
References

Adachi, M., Bekku, Y.S., Konuma, A., Kadir, W.R., Okuda, T., Koizumi,

H., 2005. Required sample size for estimating soil respiration rates in

large areas of two tropical forests and of two types of plantation in

Malaysia. Forest Ecology and Management 210, 455–459.

Bremner, J.M., 1960. Determination of nitrogen in soil by the Kjeldahl

method. Journal of Agricultural Science 55, 11–33.

Buchmann, N., 2000. Biotic and abiotic factors controlling soil respiration

rates in Picea abies stands. Soil Biology & Biochemistry 32, 1625–1635.

Cao, G.M., Tang, Y.H., Mo, W.H., Wang, Y.S., Li, Y.N., Zhao, X.Q.,

2004. Grazing intensity alters soil respiration in an alpine meadow on

the Tibetan plateau. Soil Biology & Biochemistry 36, 237–243.

Curiel-Yuste, J., Janssens, I.A., Carrara, A., Ceulemans, R., 2004. Annual

Q10 of soil respiration reflects plant phonological patterns as well as

temperature sensitivity. Global Change Biology 10, 161–169.
Davidson, E.A., Belk, E., Boone, R.D., 1998. Soil water content and

temperature as independent or confounded factors controlling soil

respiration in a temperate mixed hardwood forest. Global Change

Biology 4, 217–227.

Epron, D., Nouvellon, Y., Roupsard, O., Mouvondy, W., Mabialab, A.,

Laurent, S.A., Joffre, R., Jourdan, C., Bonnefond, J.M., Berbigier, P.,

Hamel, O., 2004. Spatial and temporal variations of soil respiration in

a Eucalyptus plantation in Congo. Forest Ecology and Management

202, 149–160.

Fang, C., Moncrieff, J.B., Gholz, H.L., Clark, K.L., 1998. Soil CO2 efflux

and its spatial variation in a Florida slash pine plantation. Plant and

Soil 205, 135–146.

Franklin, R.B., Mills, A.L., 2003. Multi-scale variation in spatial

heterogeneity for microbial community structure in an eastern Virginia

agricultural field. FEMS Microbiology Ecology 44, 335–346.

Freibauer, A., Rounsevell, M.D.A., Smith, P., Verhagen, J., 2004. Carbon

sequestration in the agricultural soils of Europe. Geoderma 122 (1),

1–23.

Grace, J., Rayment, M., 1999. Respiration in the balance. Nature 404,

819–820.

Granier, A., Ceschia, E., Damesin, C., Dufrene, E., Epron, D., Gross, P.,

Lebaube, S., Le Dantec, V., Le Goff, N., Lemoine, D., 2000. The

carbon balance of a young Beech forest. Functional Ecology 14,

312–325.

Gough, M., Seiler, J.R., 2004. The influence of environmental, soil carbon,

root, and stand characteristics on soil CO2 efflux in loblolly pine (Pinus

taeda L.) plantations located on the South Carolina Coastal Plain

Christopher. Forest Ecology and Management 191, 353–363.

Hanson, P.J., Edwards, N.T., Garten, C.T., Andrews, J.A., 2000.

Separating root and soil microbial contributions to soil respiration: a

review of methods and observations. Biogeochemistry 48, 115–146.
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