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Research Article

A New Soil Sampling Design in Coastal Saline
Region Using EM38 and VQT Method

Spatial sampling design based on the variability and distribution of soil properties is an

important issue with the progress in precision agriculture and soil ecology.

Electromagnetic induction (type EM38) and variance quad-tree (VQT) method were

both applied to optimize the sampling scheme of soil salinity in a coastal reclamation

field in north Jiangsu Province, China. Apparent soil electrical conductivity (ECa)

measured with EM38 was used as an ancillary variable and the spatial distribution

of ECa was used as priori information. The process and result of VQT algorithm analysis

was illustrated and the obtained sampling strategy was validated using observed soil

salinity. Then the spatial precision and sampling efficiency were evaluated. The result

indicated that the spatial distribution of soil salinity produced with the VQT scheme

was quite similar to that producedwith total sampling sites, while sampling quantity of

the former was reduced to approximately 1/2 of the latter. The spatial precision of VQT

scheme was considerably higher than that of traditional grid method with respect to

the same sampling number, and fewer samples were required for VQT scheme to obtain

the same precision level. A 17.3% increase in sampling efficiency was achieved by VQT

over grid method at the precision level of 90%. The VQT method was proved to be more

efficient and economical because it can sample intensively or sparsely according to

variation status in local areas. The associated application of EM38 and VQT method

provides efficient tools and theoretical basis for saving sampling cost and improving

sampling efficiency in coastal saline region and enriching soil ecology.
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1 Introduction

With the advance of precision agriculture and soil ecology, reliable

information on the variation of soil properties has been increasingly

attracting attention because it can provide efficient decisions on

practices such as irrigation, fertilization, soil, and environmental

management at the field and regional scales. At present, the com-

monly used means is to estimate values at unsampled sites using

observed samples, and to represent the spatial variation by maps of

the predicted values [1–3]. Thus the number of these maps and their

reliability in field management depend on the accuracy of the

estimated values, which essentially depends upon the initial

sampling and field observations [4]. However, field observation has

been traditionally based on discrete sampling procedures using

either grid-based or statistically based random sampling strategy.

The classical statistically based sampling approach is proved to be

inferior to grid method in determining sampling numbers since the

former takes no account of the inherent spatial correlation and the

relative positions of sampling sites [5]. Regular grid method is a

simple sampling design, while it is a laborious and time-consuming

procedure presently if large areas need investigating. Considering

the contradiction between sampling expense and sampling scheme

resolution, the appropriate sampling strategy must be determined

on the basis of adequate precision of spatial information of soil

properties. Otherwise the sampling might be excessively intensive

than necessary or too sparse to provide spatially correlated data for

variogram calculation and spatial interpolation. More and more

attention has been given to the studies on designing spatial

sampling strategies recently. Simulated annealing was proposed

to determine the optimal grid spacing and reduce the sampling

density by minimizing the Kriging variance [6–8]. Brus et al.

[9, 10] applied fuzzy k-means clustering to optimize the quantity

and distribution of sampling points and the similar approach was

also used by Minasny and McBratney [11]. Other studies explored

algorithms for spatial sampling by choosing ancillary variables.

Lesch et al. [12–14] also applied an algorithm for calibrating electro-

magnetic induction (EMI) data and linked terrain attributes,

climatic, and geological data with stratifying the study area.

Hengl et al. [15] and Heuvelink et al. [16] designed sampling schemes
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using environmental covariates. Minasny and McBratney [17]

developed a conditioned Latin hypercube method for sampling with

the help of auxiliary information. In this paper the variance quad-tree

(VQT) method widely used in image compression [18], is applied to the

soil sampling design in a coastal saline field. Apparent soil electrical

conductivity (ECa) measured by electromagnetic induction instru-

ment (type EM38) was selected as ancillary variable, and the spatial

distribution map of ECa was used as prior knowledge to design the

sampling strategy of soil salinity. The process and result of VQT

algorithm analysis was illustrated with detail. The prediction pre-

cision of the obtained VQT scheme was validated and evaluated using

the observed salinity data, and sampling efficiency of VQTmethodwas

then compared with that of conventional grid method.

2 Materials and methods

2.1 Experimental area

This study was conducted on Jinhai Farm, located in the southeast of

Dafeng City, North Jiangsu Province, China. The farm was approxi-

mately 4 km to the coastline of China Yellow Sea, and bordered on its

western side by the Dafeng Milu National Nature Reserve. The

climate is subtropical and characterized by transition, oceanity,

and monsoon with large seasonal fluctuations in temperature

and precipitation. Rainy season (accounting for approximately

70% of annual rainfall) is from June to August with average annual

precipitation of 1058.4mm. The farm covers a variety of salinity

conditions and its soils are representative for large areas of

coastal saline soils of China. Sandy loam is the predominant soil

type due to modern marine and fluvial deposits. Soil salinity is

known as a most significant problem in this area. Over the past

decades, many coastal tideland areas have been successively

reclaimed for agricultural land uses under a series of reclamation

projects. The field used in the present study, approximately 0.69hm2

(48m� 144m) situated in southwest of the farm, had been

reclaimed since 1999 (Fig. 1) with rotation cropping system of cotton-

rape two harvests in 1 year.

2.2 Data collection and soil sampling

A grid-sampling method (average interval of 4m) was employed on

the field of our interest and 285 grid points were selected as

sampling locations. At each grid point, ECa was firstly measured

by the horizontal mode of electromagnetic induction (type EM38),

which was placed on the ground. Then a representative soil sample

at 0–20 cm surface layer was collected for lab analysis. To ensure the

representation, this sample was obtained by mixing four soil

samples gatheredwithin a 1mdiameter circle around the grid point.

A total of 285 ECa data and soil samples were collected, which was

conducted in March 2008, just the critical season of spring-sowing.

2.3 Soil property analysis

Soil samples were air-dried, crushed, and sieved at 2mm prior to

chemical analysis. Soil salinity was determined measuring electrical

conductivity of 1:5 soil water extract (EC1:5). The 1:5 soil/water sus-

pensions were prepared by weighing 10 g of soil into a pop-top tube,

adding 50mL of deionized water, and shaking for 5min on an end-

over-end shaker. After being centrifuged, the EC1:5 of the super-

natant was directly measured with a conductivity meter [19]. In

many previous studies, electrical conductivity of saturated soil paste

extract (ECe) was widely used to determine soil salinity. In our study,

EC1:5 was used as a surrogate of ECe owing to the significant corre-

lation between EC1:5 and ECe, as was reported by numerous authors

for coastal saline soil [20–22].

2.4 Variance quad-tree (VQT) algorithm

Quad-tree is a hierarchical decomposition technique that involves

successively partitioning a two-dimensional space into four equal-

size quadrants or blocks that are more homogeneous than the space

itself. This process is repeated iteratively until each quadrant meets

some criterion of homogeneity, and the result may have quadrants

of several different sizes. This technique is widely used for

Figure 1. Geographic location of study field and
spatial distribution of sampling sites.
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spatial data collection, image compression, and spatial sampling

design [23, 24].

The VQT is based on the principle of quad-tree decomposition

where an area of interest is divided into quadrants or strata so each

stratum has more-or-less equal variation [25, 26]. This method opti-

mizes spatial sampling schemes by sampling sparsely in areas that

are relatively uniform andmore intensively in areas where variation

is strong. Recently, sampling in the presence of ancillary variables

has been explored. Minasny and McBratney [17] developed the appli-

cation of the VQTmethod on sampling design in the presence of DEM

(digital elevation model) and its derivatives, and Landsat TM images.

The theoretical background and procedure of VQT algorithm has

been reported by Li et al. [24], Samet [27], Csillag [28], and Wu and

Long[29].

3 Results and analysis

3.1 Semi-variogram and spatial distribution of ECa

The application of the VQT algorithm will be initially illustrated

using ECa data measured by electromagnetic induction EM38 from

our study field. Since statistically abnormal distribution of data

can have an adverse impact on semi-variogram and further inter-

polation, an elementary knowledge of raw ECa data is required

before spatial analysis. Kolmogorov–Smirnov testing suggested that

a logarithmic transformation was necessary to ensure the normality

of ECa data before semi-variogram calculation. The theory model

and corresponding parameters of semi-variance are presented in

Fig. 2a. These parameters included the nugget value C0, sill (C),

nugget–sill-ration (C0/C), range value A, and determination coeffi-

cient R2. It was evident that semi-variance of ECa fitted a spherical

model well and exhibited strong spatial dependency according to

C0/C [30]. Figure 3b displays the measured versus predicted ECa

data and the cross-validation result of Kriging interpolation. The

mean prediction error (MPE) and root mean square prediction error

(RMSPE) were �0.00049 and 0.1366, respectively, indicating that the

Kriging approach was reasonably successful at producing the ECa

estimates at unsampled sites.

Raster map of soil ECa across the study field was generated using

semi-variogram model in Fig. 2a. As illustrated in Fig. 3a, the ECa

exhibited strip and block patterns and showed great spatial vari-

ation at different locations of the study field. It can be summarized

that the ECa in eastern areawas generally larger than that in western

area, and the block of high ECa was located at the southeastern part

of the study field. This phenomenon can be explained by many

factors, such as the variability of soil salinity, cropping system,

microtopography, and soil texture across the study field. Field inves-

tigation showed that at places where ECa was relatively low, crop

grew well according to the cotton stubble, while high surface soil

salinity was observed at southeast part of high ECa. A further analysis

revealed that the ECa and surface soil salinity (EC1:5) were signifi-

cantly correlated and the proportion of the explained variability

accounted for 95.4%, indicating the high reliability of ECa as a

surrogate of salinity and the feasibility of optimal sampling design

for salinity using ECa spatial distribution. Considering the strong

variability of ECa across the study field and the demand of square

image for VQT algorithm, the study field was subdivided into A, B,

and C three equal-sized regions (48m� 48m for each region, Fig. 3b),

availing to quantitatively compare the results of VQT algorithm on

regions of various spatial variation.

Figure 2. Semi-variogram and cross-validation result for spatial prediction of soil ECa.

Figure 3. Spatial distribution map of soil ECa and its zoning.
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3.2 VQT algorithm analysis

Variance quad-tree algorithm was applied to split the distribution

map of region A, B, and C into equally sized strata, respectively.

Figure 4a shows the change of maximum variance within each

stratum as the number of iterations of the VQT algorithm increased.

It can be seen that the variance within the strata decreases rapidly

with the increase of total strata number for each region. For indi-

vidual region A, the within-strata variance began to plateau after 21

iterations, while 16 and 19 iterations were needed for separate

region B and C, respectively. With respect to the same within-strata

variance, on condition that 5% maximum variance of region A was

set as the homogeneity criteria of the study field, then 21, 25, and 45

iterations were demanded to satisfy the requirement for region A, B,

and C, respectively, and the iteration number difference may be

explained by the observable inconsistency of variation status in each

region. Figure 4b presents the number of strata with the increase of

threshold of maximum variance for each region and the total study

field, respectively. It was apparent that for the same criteria of

maximum variance, the required strata number of region C was

considerably larger than that of region B and region A, suggesting

that the required iterations and strata increased with the variability

of ECa spatial distribution. In addition, the required strata increased

sharply with the decrease of the criteria of within-strata variance,

especially for within-strata variance of <10, and it was also the case

for the whole study field. Figure 4b shows the number of strata.

Figure 5 displays the 420, 276, and 195 strata as calculated from

the distribution map of ECa for the study field. The VQT algorithm

Figure 4. Maximum within-stratum variance versus iteration number and threshold of maximum variance versus number of stratum.

Figure 5. Sampling schemes for soil ECa

generated with the VQT method of 420, 276,
and 195 soil strata.
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identified places within the field with greater local variance, where

the ECa varied dramatically over a small area. This information could

help to guide subsequent soil sampling, and samples can be collected

intensively in the places with greater variability and sparsely in

uniform area, which will ensure that each sample is representative

of a more-or-less equal variance, and the collected sample infor-

mation should be more valuable than merely grid sampling the

same field. In Fig. 5, where higher ECa variance was observed, the

VQT algorithm sought out and described the boundaries of possible

soil management units with more intensive meshes. This would be

regarded as the borders between discontinuities in ECa. As soil

salinity is the most influencing soil attribute on crop yield in coastal

saline region, it also implies the strong variation of crop growth

status in boundaries of greater ECa local variance.

The VQT algorithm can find wide applications in spatial sampling

design for regionalized variables. In precision agriculture, this

approach can be used to design sampling schemes of crop yield

based on its variation, and soil attributes which may be considered

the most influencing factors on crop yield. The main limitation of

this approach is requiring prior knowledge of spatial variability for

the soil property (or ancillary variable relevant to the soil property,

for instance the ECa easily obtained and well correlated with salinity

in this paper) and it is more suitable for long-time series sampling

scheme for variables of interest in practical application. As discussed

by de Gruijter et al. [31], Li et al. [32], and Minasnya et al. [23], the VQT

algorithm is more advantageous in designing sampling schemes

than geometric methods and k-means clustering. VQT uses infor-

mation of non-stationary ancillary variable and it does not minimize

the within-strata variance, but represent spatial units with almost

equal variance. Therefore its strata are not discrete but spatially

contiguous and discernible [6].

The VQTmethod has identified several areas within the study field

to ensure the soil sampling at a more proper density than the rest of

the field, while this would be undetectable using a regular grid

approach (Fig. 6). Obviously, with a smaller sample volume, the

VQT algorithm would provide a sampling design to collect samples

intensively in the places with greater variability and sparsely in

uniform area, which is less spatially uniform than a regular grid

approach. The VQT approach essentially provides a means for iden-

tifying the support field for future sampling and the specified

locations of sampling sites can be laid out in a number of ways.

The two most common approaches are presented in Fig. 6. Figure 6a

displays the sampling points stationed at the center of each stratum,

whereas Fig. 6b shows a random allocation of the points.

3.3 Validation and evaluation of sampling

efficiency

To validate the above VQT sampling scheme, spatial distribution

maps, visually illustrated in Fig. 7, were generated by ordinary

Kriging using all 285 soil EC1:5 data (Fig. 7a) and 141 soil EC1:5

samples (Fig. 7b), respectively. Compared with the ECa spatial distri-

bution in Fig. 3, Fig. 7a shows quite similar spatial characters, with

high level in the southeastern section and low value in the western

and northern parts of the study field, indicating that the spatial

pattern of ECa depicted the variation of soil salinity and it was

credible to design sampling schemes for coastal soil salinity using

the ECa data measured by electromagnetic induction EM38. In

addition, soil EC1:5 map from 141 samples (Fig. 7b) was similar to

that from 285 sites (Fig. 7a) to a large extent, namely Fig. 7b almost

exhibits the same strip and block patterns as Fig. 7b despite the

Figure 6. Sampling schemes for soil ECa generated with the VQTmethod
of 141 soil strata.

Figure 7. Spatial distribution of soil EC1:5 produced with all samples and
141 sites of the VQTscheme.
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smooth of some local-variance details. Although the sampling

quantity generated by the VQT method was reduced to approxi-

mately 1/2 of total samples, the spatial similarity between Fig. 7a

and b approached 90%.

Conventional grid sampling method and VQT approach were both

adopted to design sampling scheme of soil EC1:5. Ordinary Kriging

was then used to predict soil salinity at unknown locations with

different number of samples obtained by the above two methods.

Difference index [33] was introduced to quantify the similarity

between distribution images of soil EC1:5 produced with various

sampling schemes, and soil EC1:5 map generated with all 285

samples was selected as the reference image (Fig. 7a). The relation-

ships betweenDI and sample quantity for the two samplingmethods

were calculated and plotted in Fig. 8. The DI generally decreases with

the increase of sample number, suggesting that larger sample num-

ber leads to less DI and higher prediction accuracy while it is

opposite for smaller sample number. As also seen, the DI obtained

by VQT method is considerably lower than that by the grid method.

Larger sample number is therefore required for grid method to

obtain the same prediction precision level. The dashed line in

Fig. 8 represents the tolerable DI level of 10% (namely mean relative

error), then, to achieve this acceptable precision level, approximate

148 samples were needed for VQT method, while some 179 samples

were needed for gridmethod, a 17.3% increase in sampling efficiency

was achieved by VQT over grid method at the present precision level.

Hence, a conclusion was drawn that with the ECa measured by EM38

as ancillary variable and ECa distribution map as prior information,

the VQTmethod can be successfully used to design sampling scheme

for soil salinity, and the obtained scheme has advantages in

sampling cost, efficiency, and Kriging prediction accuracy by com-

paring with conventional grid method.

4 Discussions and conclusions

4.1 Discussions

The VQT approach provides a means for identifying the study area

and dividing it into equal-sized strata to ensure that each stratum

has similar variation, sampling efficient is then improved by collect-

ing samples intensively or sparsely according to local variability

status. This approach can find wide applications in farmlands of

precision agriculture and long-term monitoring field which needs

sampling periodically [34–39]. However, in practical application, the

limitation of this methodology is that it needs more understanding

about spatial variability for the soil attribute and it is not suitable for

the initial sampling design for variables of interest. As pointed out,

the reliability of VQT sampling scheme relies on two aspects. One is

the accuracy of prior information, namely the spatial distribution

map of ECa measured by electromagnetic induction EM38, essen-

tially the relationship between ancillary variable (ECa) and variable

of interest (soil salinity), since the response of ECa to salinity is

determined bymany other soil properties, such asmoisture, texture,

and bulk density [34–36, 40–44], although soil salinity is the most

influencing factor on ECa in coastal saline region and the application

of EM38 to sampling design of salinity proves to be reliable in our

study field, and the feasibility and credibility of its application in

arid and semi-arid saline region is still unknown. The other lies in

the VQT method, this study was conducted in a small-scale field,

however, further researchwas needed to judge the influence of other

factors such as topography, groundwater, drainage system, and land

use patterns on the suitability of VQT in large-scale area [39–44]. The

current study was associated with the application of EM38 and VQT

method, and the main limitation of VQT mentioned above is over-

come by EM38 due to the easily obtainable feature of ECa and

significant correlation between ECa and salinity. There are several

other reasons including compact of design, ease of use, and the non-

contacting nature of EM38. In this paper, horizontal ECa of EM38was

successfully used to design sampling scheme of topsoil salinity,

considering the fine response of vertical ECa to soil salinity at deep

layers of the root zone, optimal sampling design for salinity profile

may be propounded using both horizontal and vertical ECa of EM38,

which is of great practicability for the determination of monitoring

points which demand long-term observation, and of sampling sites

which require periodical investigation [1, 22, 40–44].

4.2 Conclusions

The VQT algorithm and ECa measured by electromagnetic induction

EM38 were used to design sampling scheme for soil salinity in

coastal saline region. EM38 instrument provides real-time measure-

ments of ECa, which consume less time compared with traditional

methods. The VQT method provides a more efficient sampling

scheme than regular gird method by purposely increasing sampling

density in areas where can be considered to be more variable and

sampling is sparse in uniform areas. In our study, the horizontal ECa

data of EM38 was used as ancillary variable of soil salinity and its

spatial distributionmapwas used as prior information, then the VQT

method was applied to design sampling scheme for topsoil salinity,

and the obtained scheme was validated and evaluated using

measured salinity data. The results revealed that the spatial pattern

of soil salinity generated with VQT sampling scheme was quite

similar to that generated with all sampling sits, while the sampling

quantity of the VQT method was reduced to approximately 1/2 of

total samples, indicating that VQT method was a cost-saving

sampling method. The comparison of prediction precision between

VQT method and conventional grid method showed that the pre-

cision of VQT method was considerable higher than that of grid

method with respect to the same sampling quantity, and less

samples were required for VQT method to obtain the same precision

level. A 17.3% increase in sampling efficiency was achieved by VQT

Figure 8. Difference index versus sampling number for soil EC1:5 distribu-
tion maps of VQT and grid sampling methods.
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over grid method at the precision level of 90%. This study demon-

strated that the sampling scheme obtained by the associated

application of EM38 and VQT algorithm had advantages in sampling

cost, efficiency, and spatial prediction accuracy compared with

traditional grid method.
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