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Based on the mechanism of action, a quantitative structure–activity relationship
(QSAR) model for the depuration rate constants (kd) of 28 PAHs, 8 PBDEs and
28 PCBs in mussels (Elliptio complanata) was constructed by partial least squares
(PLS) regression, following the guidelines for development and validation of
QSAR models. For the training set of the QSAR model, r2¼ 0.953, the cross-
validated regression coefficient (Q2

CUM) was 0.947. The predicted log kd values for
the validation set were consistent with the observed values, with a standard error
(SE) of 0.160 log units and a squared correlation coefficient (Q2

EXT) of 0.892.
Comparatively, the developed QSAR model had good robustness, predictive
ability and extended applicability domain. The electrophilicity index (!),
molecular polarizability (�), the averages of the negative potentials on the
molecular surface ( �V�s ) and the balance parameter of surface potential (�) were
the key parameters governing the log kd values in the QSAR model, which
indicated that the log kd value was mainly related to the partition ability,
electrostatic interactions, and van der Waals interactions of compounds.

Keywords: depuration rate; Elliptio complanata; PAHs; PBDEs; PCBs;
quantitative structure–activity relationship (QSAR)

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and
polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that can enter
water bodies and eventually sink into the sediment through various transportation routes
[1,2]. These POPs have been of great concern due to their elevated concentrations and wide
distribution; they pose not only an environmental risk but also a human health risk
through accumulation in human tissues and fluids [1–4].

Mussels accumulate POPs very efficiently, and are widely used as bio-indicators in the
aquatic environment due to their wide geographical distribution, tolerance to various
environmental conditions and availability throughout the year [5]. Mussels can be used to
determine the time required to achieve chemical equilibrium, which can be calculated from
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the depuration rate constants (kd) of chemicals in organisms [6]. The kd is one of the most
important kinetic parameters, which can be used to estimate bioconcentration factors
(BCF) and the time to steady state [7–9]. Hence, it is of great importance to explore the
depuration rate constants of hazardous compounds.

The guidelines for the experimental determination of kd have been documented [10,11];
however, the experimental data are challenged by the reality that few empirical data are
available for the thousands of commercial substances that require evaluation. Therefore an
alternative approach, such as quantitative structure–activity relationship (QSAR) model-
ling, was proposed for chemical safety assessment by the new EU chemicals legislation
REACH [12]. QSARs can fill the data gap of organic pollutants, decrease experimental
expenses and, in particular, reduce animal testing [13]. They have been widely used in
research on the acute toxicity [14], mixture toxicity [15], endocrine disrupting activities
[16,17] and photoinduced toxicity [18,19] of organic compounds.

Several QSAR models for the kd of compounds in mussels have been constructed using
octanol/water partition coefficients (KOW) [10,20] or quantum chemical parameters [6,21],
which can be used to explore the inherent relations between molecular structures of
chemicals and their kd values. Previous studies have constructed QSAR models
individually on PAHs [6] or PCBs [10,21], but no QSAR models have been developed
on PBDEs or systematically on heterogeneous series of chemicals including PAHs, PCBs
and PBDEs. In addition, the molecular structures of the compounds (planar or non-
planar) may make contributions to the kd. According to the guidelines for QSARs
development and validation proposed by the Organization for Economic Co-operation
and Development (OECD), QSARs for regulatory purposes should be associated with the
following information: a defined endpoint; an unambiguous algorithm; a defined domain
of applicability; appropriate measures of goodness-of-fit, robustness and predictive power;
and a mechanistic interpretation, if possible [22]. Thus further QSAR development should
follow these guidelines.

In this study, following the OECD guidelines [22], we attempted to develop a QSAR
model, in freshwater mussels (Elliptio complanata), for the kd of three categories of POPs
(28 PAHs, eight PBDEs and 28 PCBs) with distinctive chemical structures by partial least
squares (PLS) regression for the first time [23]. Based on the mechanism of action,
appropriate molecular structural parameters computed by density function theory were
adopted to construct QSAR models. In addition, the performance of the developed QSAR
model was evaluated by external validation, and the critical molecular structural features
related to the depuration rate were discussed.

2. Materials and methods

2.1 Data compilation and chemical domain

The kd values of the three categories of POPs (28 PAHs, eight PBDEs and 28 PCBs) in
mussels (Elliptio complanata) were taken from previous studies [10,11,20] and then
converted into the form of log kd values that ranged from �2.301 to �0.577 log unit.

2.2 Mechanism consideration and molecular structural parameters selection

As proposed by the OECD guidelines [22], QSAR models should be developed based on
the mechanism of action. Drouillard et al. [20] and Baumard et al. [24] have reported that
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the depuration rate is related to the equilibrium distribution interactions. The process may

involve the following interactions: the partition ability in the bio-phase, dipolar–dipolar

interactions, the hydrogen bond or electrostatic interactions. It has been generally

accepted that equilibrium partitioning is the major factor determining the uptake and

release rates of some lipophilic pollutions in gill-breathing aquatic animals [25]. Thus,

a total of 13 theoretical molecular structural parameters were selected to characterize these

interactions.
The molecular volume (V) and the average molecular polarizability (�) were selected

to describe the cavity-forming interactions. Other parameters such as the energy of the

highest occupied molecular orbital (EHOMO), the energy of the lowest unoccupied

molecular orbital (ELUMO), the most positive hydrogen atom in the molecule (qHþ), the

most negative formal charge in the molecule (q�), electrophilicity index (!), the most

positive and most negative values of the molecular surface potential (Vs,max, Vs,min), the

averages of the positive and negative potentials on the molecular surface ( �Vþs ,
�V�s ), the

average deviation of surface potential (O) and the balance parameter of surface potential

(�) were purposely selected to describe the hydrogen bond or electrostatic interactions.
The molecular volume V is defined as the volume inside a contour of 0.001 electrons/

Bohr3 density. The average molecular polarizability � is calculated as [18]:

� ¼ ð�xx þ �yy þ �zzÞ=3 ð1Þ

where �xx, �yy and �zz are the diagonal elements in the standard orientation of molecular

polarizability tensor.
! was calculated as follows:

� ¼
ELUMO þ EHOMO

2
ð2Þ

� ¼
ELUMO � EHOMO

2
ð3Þ

! ¼
�2

2�
ð4Þ

where � is the chemical potential, � is the chemical hardness.
Quantum chemical parameters such as EHOMO, ELUMO, qH

þ and q� were proved

successful in many QSAR studies for characterizing intermolecular electrostatic interac-

tions [26]. The electrophilicity index ! measures the ability of a compound to accept

electrons. Roy et al. reported that the toxicity of aliphatic chemical compounds on

Tetrahymena pyriformis correlated strongly with ! [27].
The potential derived parameters were calculated by the following equations [28]:

�VþS ¼
1

�

X�
i¼1

VþS ðriÞ ð5Þ

SAR and QSAR in Environmental Research 563
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�V�S ¼
1

�

X�
j¼1

V�S ðrj Þ ð6Þ

� ¼
1

�þ �

X�þ�
i¼1

VðriÞ � �Vs

�� �� ¼ 1

�þ �

X�þ�
i¼1

VðriÞ �
� �Vþs þ �

�V�s
�þ �

����
���� ð7Þ

� ¼
�2þ�

2
�

ð�2totÞ
2

ð8Þ

�2tot ¼ �
2
þ þ �

2
� ¼

1

�

X�
i¼1

½VþðriÞ � �Vþs �
2
þ

1

�

X�
j¼1

½V�ðrj Þ � �V�s �
2

ð9Þ

where s stands for molecular surface; � and � are the number of the points for the positive
and negative potentials, respectively; Vþ(ri) and V�(rj) are the positive and negative
potentials on the molecular surface, respectively; �Vþs and �V�s are the averages of the
positive and negative potentials on the molecular surface; �2þ, �

2
� and �2tot are the variance

of values for the positive, negative and total surface potentials.
The molecular surface potential indicates the charge distribution in a molecule [29],

which is a gauge of the basicity and nucleophilicity of a molecule [30]. These potential-
derived parameters have been successfully used to rationalize the toxicities of chlorinated
diphenyls [31]. The details of equations are listed in the supplementary materials available
via the Supplementary Content tab on the article’s online page at http://dx.doi.org/.

All the quantum chemical descriptors were computed by Gaussian 09 programs [32].
Initial geometries of the compounds were optimized by semi-empirical method PM3, then
optimized at the hybrid Hartree–Fock density functional theory B3LYP/6-31G(d, p) level
[33]. Solvent effects (water) were taken into consideration implicitly, including the integral
equation formulation of the polarized continuum model [34]. A frequency analysis was
performed on the optimized geometries to ensure that the systems had no imaginary
vibration frequencies. The potentials on the molecular surface were calculated on the
0.001 electrons/bohr3 surface of chemicals. Values for all the molecular structural
parameters are listed in Table S1 of the supplementary materials (available via the
Supplementary Content tab on the article’s online page at http://dx.doi.org/10.1080/
1062936X.2011.569947).

2.3 QSAR development and validation

The original data set was divided into a training set (80%) and a validation set (20%), as
listed in Table 1. Partial least squares (PLS) regression was conducted for the model
development as PLS is able to analyse data with strongly collinear, noisy and numerous
predictor variables [23]. The software of Simca-S (Version 6.0, Umetri AB & Erisoft AB)
was employed for the PLS analysis with leave-many-out cross-validation to determine the
number of PLS components (A). Cross-validation simulates how well a model predicts new
data, and gives a statistical Q2

CUM (the fraction of the total variation of the dependent
variables that can be predicted by all the extracted components) for the final model. The
PLS analysis was performed repeatedly so as to eliminate redundant molecular structural
parameters, as done in previous studies [35].

564 F. Li et al.
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The model predictability was evaluated by external validation. The performance of

external validation was characterized by the determination coefficient (r2), standard error

(SE) and external explained variance (Q2
EXT), which are defined as below [36]:

r2 ¼ 1�
Xn
i¼1

ð yfiti � yiÞ
2

�Xn
i¼1

ð yi � yÞ2 ð10Þ

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ð yi � ŷiÞ
2
�
n� 1

s
ð11Þ

Q2
EXT¼ 1�

XnEXT

i¼1

ð yi � ŷiÞ
2

�XnEXT

i¼1

ð yi � �yEXTÞ
2

ð12Þ

Table 1. Logarithm of the observed and predicted depuration rate constants (log kd) of the
considered compounds.

Compoundsa

log kd

Compoundsa

log kd

Observed Predicted Residuals Observed Predicted Residuals

Naphthalene �0.654 �0.673 0.019 BDE-99 �2.000 �1.896 �0.104
2-Methylnaphthalene* �0.686 �0.418 �0.269 BDE-153 �2.222 �2.190 �0.032
1-Methylnaphthalene �0.604 �0.438 �0.166 BDE-138 �2.046 �2.029 �0.017
Biphenyl �0.672 �0.745 0.073 BDE-190 �1.886 �2.062 0.176
2,6-Dimethylnaphthylene �0.577 �0.527 �0.050 PCB-19* �1.081 �1.151 0.070
Acenaphthylene �0.734 �0.569 �0.165 PCB-22 �1.149 �1.215 0.066
Dibenzofuran �0.635 �0.691 0.056 PCB-42 �1.347 �1.478 0.131
Acenaphthene* �0.625 �0.417 �0.208 PCB-74 �1.553 �1.478 �0.075
2,3,5-Trimethylnaphthalene �0.746 �0.642 �0.104 PCB-66 �1.509 �1.582 0.074
Fluorene �0.721 �0.621 �0.100 PCB-95 �1.538 �1.689 0.152
1-Methylfluorene* �0.903 �0.777 �0.126 PCB-91* �1.553 �1.740 0.188
Dibenzothiophene �0.793 �0.862 0.069 PCB-92 �1.678 �1.809 0.132
Phenanthrene �0.768 �0.793 0.025 PCB-99 �1.658 �1.859 0.201
Anthracene �0.747 �0.654 �0.093 PCB-97* �1.638 �1.626 �0.012
1-Methylphenanthrene* �0.858 �0.860 0.002 PCB-87 �1.602 �1.656 0.054
Fluoranthrene �0.901 �0.964 0.063 PCB-85 �1.721 �1.700 �0.022
Pyrene �0.786 �0.995 0.208 PCB-110 �1.602 �1.707 0.105
Benz[a]anthracene �1.034 �1.083 0.049 PCB-118* �1.854 �1.738 �0.116
Chrysene �1.078 �1.202 0.124 PCB-105 �1.824 �1.738 �0.086
Benzo[b]fluoranthene �1.082 �1.092 0.009 PCB-136 �1.745 �1.798 0.053
Benzo[k]fluoranthene* �1.230 �1.184 �0.046 PCB-151 �2.000 �2.005 0.005
Benzo[e]pyrene �1.138 �0.895 �0.243 PCB-149 �1.921 �1.903 �0.018
Benzo[a]pyrene �1.122 �1.116 �0.006 PCB-134 �2.097 �2.062 �0.035
Perylene* �1.376 �1.139 �0.237 PCB-146* �2.000 �2.040 0.040
Indeno[123cd]pyrene �1.327 �1.335 0.008 PCB-141 �2.155 �2.040 �0.115
Dibenz[ah]anthracene �1.163 �1.349 0.186 PCB-130* �2.155 �1.868 �0.287
Benzo[ghi]perylene �1.223 �1.263 0.040 PCB-137 �2.222 �1.950 �0.272
Coronene �1.300 �1.442 0.142 PCB-138 �2.155 �1.950 �0.205
BDE-28 �1.432 �1.494 0.062 PCB-128 �1.721 �1.803 0.082
BDE-75 �1.585 �1.647 0.062 PCB-156 �2.046 �1.906 �0.140
BDE-47* �1.721 �1.648 �0.074 PCB-179 �2.301 �2.030 �0.271
BDE-100 �2.097 �2.049 �0.048 PCB-178 �2.222 �2.163 �0.059

aCompounds marked with asterisked (*) were selected to form the external validation set.
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where yfiti is the fitted log kd value of the ith compound, �y is the average response value

in the training set, yi and ŷi are the observed and predicted values for the ith compound,

respectively. �yEXT is the average response value of the validation set, n stands for the

number of compounds in the training set, and nEXT stands for the number of compounds

in the validation set.
The applicability domain of the developed QSAR model was assessed by the Williams

plot, i.e., the plot of standardized residuals (�) versus leverage (Hat diagonal) values (hi)

[37]. The hi value of a chemical in the original variable space and the warning leverage

value (h*) are defined as:

hi ¼ xTi ðX
TXÞ�1xi ði ¼ 1, . . . , nÞ ð13Þ

h� ¼ 3ð pþ 1Þ=n ð14Þ

where xi is the descriptor vector of the considered compound and X is the model

matrix derived from the training set descriptor values, and p is the number of predictor

variables.
When the h value of a compound is lower than h*, the probability of accordance

between predicted and actual values is as high as that for the compounds in the training

set. A chemical with hi4 h* will reinforce the model if the chemical is in the training set.

Such a chemical in the validation set implies that it is structurally distant from compounds

in the training set, and its predicted data may be unreliable. However, this chemical may

not appear to be an outlier because its residuals may be low. Thus the leverage and the

standardized residual should be combined for the characterization of the applicability

domain.

3. Results and discussion

3.1 Development and validation of the QSAR model for log kd

PLS analysis with the log kd as the dependent variable and the molecular structural

parameters as predictor variables resulted in the following optimal QSAR model:

log kd¼ 1:34�10�1�1:07�103!�4:86�10�3��7:65�10 �V�s �4:31�10�2�

n ðtraining setÞ ¼ 51, A¼ 2, r2¼ 0:952, Q2
CUM¼ 0:947, SE¼ 0:119,

n ðvalidation setÞ ¼ 13, Q2
EXT¼ 0:892, SE¼ 0:160, p50:0001

where p is the significance level.
The predicted log kd values and residuals for compounds are listed in Table 1. The r2

value of the QSAR model was 0.952, indicating a good goodness-of-fit of the model. Q2
CUM

of the QSAR is as high as 0.947, implying good robustness of the model. The differences

between r2 and Q2
CUM (0.005) did not exceed 0.3, indicating no over-fitting in the model

[38]. As show in Figure 1, the predicted log kd values were consistent with the observed

values for both the validation and training sets. The model revealed acceptable

predictability with Q2
EXT¼ 0.892, SE¼ 0.160. In summary, the developed QSAR model

shows satisfactory performance.

566 F. Li et al.
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3.2 Applicability domain of the developed QSAR model

The distribution of residuals is shown in Figure 2. Application of the Kolmogorov–
Smirnov test for normality (at the 95% confidence level) confirms that the distribution of
residuals is a distinctive bell-shaped pattern associated with a normal distribution
(mean¼ 0.00, standard deviation¼ 0.12), which implies that the residuals are non-
systematic and the applicability domain of the developed QSAR model can be visualized
by the Williams plot.

As shown in the Williams plot (Figure 3), hi values of all the compounds in the training
and validation sets were lower than the warning value (h*¼ 0.294), and all the compounds

Figure 1. Plot of observed versus predicted log kd values for the training and validation. Q2
CUM is

the leave-many-out cross-validation squared correlation coefficient for the training set; Q2
EXT is the

squared correlation coefficient for the validation set and RMSE is the root mean square error.

Figure 2. Distribution of the residuals for log kd values. SD is the standard deviation.
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in both the training and validation sets were in the domain. None of the compounds were
particularly influential in the model space and the training set was of great representa-
tiveness. For all the compounds in the training and validation sets, their standardized
residuals were smaller than 2.5 standard deviation units (2.5�); there were no outliers for
the developed QSAR model. Thus, the developed QSAR model can be used to predict the
log kd of PAHs, PBDEs and PCBs in mussels (Elliptio complanata).

3.3 Mechanistic implications of the developed QSAR model

The developed PLS model extracted two PLS components which were loaded primarily
upon four predictor variables. Values of the variable importance in the projection (VIP)
and PLS weights (w*) are listed in Table 2. The w* values can be used to estimate how
the predictor variables and the response variables combine in the projections (PLS
components), and how they relate to each other [23].

The first PLS component was loaded primarily on the two descriptors, ! and �V�s
(Table 2). As ! and �V�s are related to the electrophilicity of compounds, the PLS
component mainly condenses information on the electrostatic interactions. The ! and �V�s
parameters remarkably govern the log kd values, as indicated by their large VIP values
among the predictor variables. Their negative PLS weights and coefficients in the current
QSAR model indicated that the negative correlation between the predictor variables and

Figure 3. Plot of standardized residuals versus leverages. Dash lines represent �2.5 standardized
residual, dotted line represents warning leverage (h*¼ 0.294).

Table 2. VIP values and PLS weights for the optimal PLS
model.

VIP w*c [1] w*c [2]

! 1.253 �0.664 �0.045
�V�s 1.225 �0.648 �0.027
� 0.821 �0.299 �0.967
� 0.506 �0.224 0.358
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log kd. ! measures the ability of a compound to accept electrons [39]. Compounds with
smaller ! values tend to depurate with difficulty. Hence, in the developed QSAR model,
the log kd increased with the decreasing ! values.

�V�s stands for the average of the negative potentials on the molecular surface. As
shown in the QSAR model, �V�s negatively correlated with log kd. The molecules with lower
�V�s values tend to have stronger electrostatic interactions, and accordingly depurate with
difficulty. For example, 1-methylnaphthalene and 2-methylnaphthalene were of the same
! value in this work. However, 1-methylnaphthalene ( �V�s ¼�0.0126) showed a bigger �V�s
value than 2-methylnaphthalene ( �V�s ¼�0.0131), which contributed to the bigger log kd
value for 1-methylnaphthalene.

The second PLS component was loaded primarily on � and �. As � is correlated with
logKOW positively [40], compounds with higher logKOW values tend to partition in the
bio-phase easily, hence the log kd values decrease with � values. The balance parameter � is
introduced as an indicator of the degree to which a molecule can interact approximately
equally through both its positive and negative regions (whether that is strongly or weakly).
Politzer et al. reported that the more similar were the magnitudes of �2þ and �2�, the higher
was the value of �, reaching a maximum value (0.25) when �2þ ¼ �

2
� [29]. In the developed

QSAR model, the log kd decreased with the increasing � values, which indicated that the
depuration rates of compounds were associated with a high level of internal charge
separation within the molecules.

3.4 Statistical performance compared with literature models

In Table 3, the current QSAR model was compared with four published QSAR models for
the depuration rates in mussels (Elliptio complanata) [6,10,11,20]. The first three QSAR
models employed the unambiguous statistical algorithm of multivariate linear regression
(MLR) and single parameter (logKOW) to predict the log kd values, which showed
comparable performances. O’Rourke et al. suggested that hydrophobicity was the main
factor governing the depuration rates, which implied that the PCB compounds with
stronger hydrophobicity depurated with more difficulty [10]. However, it was difficult to
describe the molecular multi-dimension information by the single parameter (logKOW)
[41]. Moreover, external validation was not mentioned in the three MLR models. Wu et al.
employed PLS regression and three predictor variables to develop a QSAR model that was
simple and reproducible for regulators and non-QSAR experts [6]. However, all the four
mentioned QSAR models were constructed on the homologous series of chemicals such as
PAHs and PCBs, and the applicability domains were not discussed [6,10,11,20].
Comparatively, the developed QSAR model in this study exhibited good robustness and
predictive ability. Moreover, the applicability domain of the model has been extended to
three categories of compounds (PAHs, PBDEs and PCBs).

4. Conclusion

Based on the mechanism of action, a QSAR model has been developed to characterize the
depuration rates of PAHs, PBDEs and PCBs in freshwater mussels (Elliptio complanata)
following the OECD guidelines. Electrostatic interactions and hydrophobicity were
important factors for the depuration rates. The molecules with lower ! and �V�s , such as
benz[a]anthracene, benzo[a]pyrene and coronene, tend to depurate with difficulty.
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The partition ability of the molecules into bio-phase is also a significant parameter factor
related to the depuration rates. In addition, compounds with planar structure (such as
PAHs) tend to depurate faster. The developed QSAR model has shown good robustness,
predictive ability and mechanism interpretability, which could be potentially applied to
predict the depuration rates of other PAHs, PBDEs and PCBs.
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[36] G. Schüürmann, R.U. Ebert, J.W. Chen, B. Wang, and R. Kuhne, External validation and

prediction employing the predictive squared correlation coefficient - test set activity mean vs

training set activity mean, J. Chem. Inf. Model. 48 (2008), pp. 2140–2145.

572 F. Li et al.

D
ow

nl
oa

de
d 

by
 [

Y
an

ta
i I

ns
tit

ut
e 

of
 C

oa
st

al
 R

es
ea

rc
h 

fo
r 

Su
st

ai
na

bl
e 

D
ev

el
op

m
en

t]
 a

t 0
1:

29
 0

2 
M

ar
ch

 2
01

2 



[37] L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, and P. Gramatica,
Methods for reliability and uncertainty assessment and for applicability evaluations of
classification-and regression-based QSARs, Environ. Health Perspect. 111 (2003), pp. 1361–1375.

[38] A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.

[39] P.K. Chattaraj, U. Sarkar, and D.R. Roy, Electrophilicity index, Chem. Rev. 106 (2006),
pp. 2065–2091.

[40] T.H. Nguyen, U. Goss K, and W.P. Ball, Polyparameter linear free energy relationships for

estimating the equilibrium partition of organic compounds between water and the natural organic
matter in soils and sediments, Environ. Sci. Technol. 39 (2005), pp. 913–924.

[41] F.A.D. Ribeiro and M.M.C. Ferreira, QSPR models of boiling point, octanol-water partition

coefficient and retention time index of polycyclic aromatic hydrocarbons, J. Mol. Struct. 663
(2003), pp. 109–126.

SAR and QSAR in Environmental Research 573

D
ow

nl
oa

de
d 

by
 [

Y
an

ta
i I

ns
tit

ut
e 

of
 C

oa
st

al
 R

es
ea

rc
h 

fo
r 

Su
st

ai
na

bl
e 

D
ev

el
op

m
en

t]
 a

t 0
1:

29
 0

2 
M

ar
ch

 2
01

2 




