
Introduction

Persistent organic pollutants (POPs) have become ubiqui-
tous in the aquatic ecosystem, they can enter an aquatic 
ecosystem through effluent, atmospheric deposition, run-off, 
and groundwater, most of them belonging to AhR agonist, 
and their toxicity mainly mediated through AhR pathway, 
for example, 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), 
the coplanar polychlorinated biphenyl 126 (PCB126), 
3-methylcholanthrene (MC), 3,3',4,4',5-pentachlorobiphe-
nyl (PCB), β-Naphthoflavone, etc, Furthermore, they are 
not only very harmful for the health of aquatic animals but 
also for humans, they may impair most systems of humans 
and lead to the appearance of cancer and tumors; such as 
polychlorinated biphenyl (PCB) and OH-PCB which may 
damage the brain (Kimura-Kuroda et  al. 2007). Polycyclic 
aromatic hydrocarbons (PAHs) can harm the immunity sys-
tem (Davila et al. 1995) and the reproductive system (den 
Besten et al. 1990), and can cause DNA damage (Lemiere 
et al. 2005). PCB, polycyclic aromatic hydrocarbon (PAH), 

and other POPs are the most important risk factor for breast 
cancer (Gammon et al. 2004), lung cancer (Okona-Mensah 
et al. 2005), and prostate cancer (Ritchie et al. 2005). So the 
widespread occurrence of POPs has attracted considerable 
attention.

Lavine et  al. (2005) reported that Xenopus laevis bind 
TCDD with 25–50-fold lower affinity than AhRs from more 
sensitive species, and different POPs have a broad affin-
ity for specific species. So, we can find that the toxicology 
mechanism of POPs is very complicated, and it is widely 
accepted that aryl hydrocarbon receptor (AhR) pathway 
mediates most if not all of the toxicological effects of POPs. 
Additionally, the diversity of AhR pathway genes and the 
significant species differences in the spectrum of toxicity 
are observed within fish; furthermore, the AhR pathway 
genes were distributed under four major steps of toxicology 
regulation: formation of cytosolic complex, translocation of 
AhR, heterodimerization of AhR, and induction of Cyp1a. 
Thus, for better understanding the toxicology mechanism 
of POPs in fish, in the present work, we focus on elucidating 
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Abstract
With the development of industry and agriculture, the cases of cancer and tumor have been increasing gradually 
in the last 30 years, and quite a few cases are caused by persistent organic pollutants (POPs), some of them belong-
ing to environmental endocrine disruptors, and they have become ubiquitous in the environment, especially in 
the aquatic ecosystem; so this issue has aroused the extensive attention of the world. The mechanism of POPs 
toxicology is very complicated, but it is mainly mediated by the aryl hydrocarbon receptor (AhR) pathway in fish. 
In order to gain a comprehensive understanding of the AhR pathway, the present paper focuses on reviewing it 
from four major steps, including formation of cytosolic complex, translocation of AhR, heterodimerization of AhR, 
and induction of CYP1A. This study summarized the isoform numbers of AhR pathway genes and the expression 
patterns in the regulation process of POPs toxicology in zebrafish.

Keywords:  Persistent organic pollutants; AhR pathway; toxicology mechanism; fish

Toxicology Mechanisms and Methods, 2010, 1–8, Early Online
Toxicology Mechanisms and Methods

2010

1

8

22 January 2010

05 March 2010

08 April 2010

1537-6516

1537-6524

© 2010 Informa UK Ltd

10.3109/15376516.2010.485227

Address for Correspondence:  Qinzhao Xue, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China. Tel: +86 535-6910581. 
Fax: +86 535-6910566. E-mail: qzxue@yic.ac.cn

TXM

485227

T
ox

ic
ol

og
y 

M
ec

ha
ni

sm
s 

an
d 

M
et

ho
ds

 D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
ah

ea
lth

ca
re

.c
om

 b
y 

U
ni

ve
rs

ity
 o

f 
So

ut
he

rn
 C

al
if

or
ni

a 
on

 0
5/

29
/1

0
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

http://informahealthcare.com/doi/abs/10.3109/15376516.2010.485227
mailto:qzxue@yic.ac.cn


2    H. Zhou et al.

the regulation mechanism of POPs toxicology in fish based 
on the above four steps.

AhR pathway

A series of experiments have revealed that the aryl 
hydrocarbon receptor (AhR) pathway plays a pivotal role in 
the mediation of POPs toxicology in fish. AhR pathway genes 
(e.g. AhR, AHRR) have been found in fish, and are detect-
able in many tissues. Their structure and function have been 
studied, including killfish, rainbow trout, zebrafish, medaka, 
and red seabream, etc. A large body of studies have revealed 
that the mechanisms of the AhR-dependent Cyp1a1 gene 
induction (see Figure 1). For better understanding the toxi-
cology mechanism of POPs, we put forward that there are four 
major steps of toxicology regulation, including formation of 
cytosolic complex, translocation of AhR, heterodimerization 
of AhR, and induction of Cyp1a.

Formation of cytosolic complex
In the absence of ligands, AhR is associated with a cytoplas-
mic protein complex with two molecules of heat shock protein 
90 (Hsp90) (Perdew 1988), immunophilin-like protein XAP2 
(also known as ARA9 or AIP) (Carver and Bradfield 1997), and 
a 23-kDa co-chaperone protein (p23) (Kazlauskas et al. 1999). 
Hsp90 is an essential component of the AhR-signaling path-
way, and loss of Hsp90 most likely results in an improperly 
folded or destabilized receptor protein, one sub-unit of the 

AhR complex, appears to direct proper folding and mainte-
nance of the high affinity ligand binding conformation of the 
AhR in some species (Soshilov et al. 2006).

There are two types of Hsp90 genes within fish, namely 
Hsp90α and Hsp90β, and they encode two similar cytosolic 
isoforms, respectively. The synthesis of Hsp90 is triggered by 
stressful cellular conditions such as high temperature, anoxia, 
radiation, cancer, and environmental pollutant (Feder and 
Hofmann 1999). During heat shock, both Hsp90α and Hsp90β 
genes are upregulated in both mouse and human cells; in 
contrast, Hsp90β gene in zebrafish is weakly responsive or 
unresponsive to elevated temperature, whereas the Hsp90α 
gene is strongly upregulated (Krone and Sass 1994). Recently, 
Padmini and Usha Rani (2009) confirmed that environmen-
tal pollutant stress also can induce the Hsp90α expression 
in grey mullets. Thus, we can propose that the two isoforms 
genes have similarity function, but they have different expres-
sion patterns in fish under the environmental stress, such as 
POPs pollution.

In the AhR pathway, Hsp90 binding is thought to mask the 
AhR-NLS (nuclear localization signal) which is used for trans-
port of AhR to the nucleus through the nuclear pore com-
plex, and it is composed of two basic amino acid segments, 
AhR(13–16:RKRR) and AhR(37–39:KRH) in the N-terminal 
region of AhR (Ikuta et  al. 2004), and this interaction is 
essential for the cytoplasmic retention of AhR (Kazlauskas 
et  al. 2001). Furthermore, Hsp90 and the proteasome are 
playing a pivotal role in modulating AhR signaling and 
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Figure 1.  Regulation mechanism of AhR pathway gene. This figure adapted from Mimura and Fujii-Kuriyama (2003) with some modification.
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Cyp1A response in trout hepatocytes (Wiseman and Vijayan 
2007). Here, proteasome is an ATP-dependent protease and 
consists of ~ 40 polypeptides, and it can rapidly degrade the 
AhR protein (Tanaka 1998). In addition, the results of Kwak 
and Kensler (2006) indicate that expression of proteasome 
sub-unit PSMB5 is modulated by bifunctional enzyme 
inducers in a manner independent of the AhR/ARNT-XRE 
pathway but dependent upon the Nrf2 (transcription factor)-
ARE(antioxidant response element) pathway.

Although the other two members (XAP2 and p23) of 
cytosolic complex are not essential for the AhR signal-
ling, they play an important role to stabilize the cytosolic 
complex. XAP2, a 38-kDa protein that was initially identi-
fied as a protein binding to the hepatitis B virus X protein 
(Kuzhandaivelu et al. 1996), and also as a binding partner 
of AhR (Ma and Whitlock Jr 1997) to modulate AhR func-
tion has been studied extensively in cell culture systems; 
moreover, it is not a limiting component in AhR regulation 
(Hollingshead et  al. 2006). It has been shown that XAP2 
enhances the stability of the AhR, inhibits CRM-1-mediated 
nucleocytoplasmic shuttling of the AhR, and that cyto-
plasmic retention of the AhR is accomplished through the 
co-operative mechanisms of both XAP2 and chromosome 
region maintenance 1 (CRM1) (Petrulis et al. 2003; Pollenz 
et al. 2006). In addition, XAP2 competes with p23 for bind-
ing to the AhR/Hsp90 complex (Hollingshead et al. 2004), 
and protects AhR from being ubiquitinated, at least in vitro 
(Morales and Perdew 2007).

The phosphoprotein p23 is a small, acidic protein that 
is ubiquitously expressed in virtually all tissues highly con-
served protein from yeast to humans, (Freeman et al. 2000). 
P23 appears to promote AhR/ARNT/DRE complex forma-
tion in an Hsp90-dependent manner by assisting with the 
heterodimerization of the AhR and ARNT. Further research 
of Cox and Miller Iii (2004) show that p23 can inhibit Hsp90 
ATPase activity, thereby stabilizing ATP-Hsp90-client protein 
complexes, and does not interact directly with either the AhR 
or ARNT (Kazlauskas et  al. 1999). However, recently, the 
results of Flaveny et al. (2009) show that p23 is dispensable for 
stable AhR protein levels, Taken together, the present results 
suggest that p23 acts as a stimulatory factor in regulating AhR 
activity.

Additionally, p23 was described to be up-regulated in rat 
brain ischemia, in human cancers, and metastatic tissue, and 
to be down-regulated in artherosclerotic plaques stimulated 
with aggregated low density lipoproteins, Further research 
of Mollerup and Berchtold (2005) suggests that apoptosis 
induced by extrinsic or intrinsic pathways led to caspase-
mediated cleavage of p23 at its C-terminal tail. Moreover, 
treatment with endoplasmic reticulum (ER) stress-inducing 
agents also resulted in the cleavage of p23 accompanied by 
caspase processing (Bakhshi et al. 2008).

Translocation of AhR
The ligand-dependent nuclear import of AhR serves as the 
first step in the induction of target genes as a biological switch; 
thus, elucidation of the transloction mechanism underlying 

the import process is important for understanding the mech-
anism of POPs toxicology. The mechanisms of translocating 
AhR to the nucleus mainly include three pathways: three-step 
mechanism of prototypical ligand-dependent (direct), ligand-
independent phosphorylation/dephosphorylation (indirect), 
as well as cell density-related pathways (Li and Wang 2010). 
At present, the latter two translocation mechanisms are still 
not very clear and the mediation process of POPs toxicology is 
mainly through the ligand-dependent pathway. Thus, in this 
article, we mainly focus on discussing the ligand-dependent 
pathway of the translocation mechanism of AhR.

The AhR protein has both a nuclear localization sig-
nal (NLS) and a nuclear export signal (NES), which play 
important roles in the AhR translocation. Ikuta et al. (2004) 
reported that the NLS comprised of amino acid residues 
13–39 consists of two separate basic amino acid segments, 
one consisting of residues 13–16 (Arg-Lys-Arg-Arg) and the 
other spanning residues 37–39 (Lys-Arg-His). In addition, 
AhR has a leucine-rich NES that comprises amino acid 
residues 55–75 in helix 2, and the NES is necessary for the 
nuclear export of the AhR protein followed by proteasome 
degradation.

Based on a large number of previous researches, we can 
envisage a three-step mechanism of ligand-dependent 
nuclear import of the AhR, as shown in Figure 2. Without 
ligand, two molecules of Hsp90 mask the AhR-NLS, which 
is essential for cytoplasmic retention of the AhR. Thus, the 
first step is ligand binding to the AhR ligand binding domain 
which results in conformational changes that expose the 
nuclear localization sequence through alterations of XAP2 
binding (Denison et al. 2002), which makes it necessary to 
facilitate interaction of the NLS with nuclear import com-
ponents. At the same time, the AhR dissociates from Hsp90 
complex. The second step is that importing α binds AhR 
through recognition of the NLS and it can joins importing β 
(Adam and Geracet 1991), while importing β interacts with 
the NPC (nuclear pore complex) (Moroianu et al. 1995), and 
then constituting the importing-NLS protein complex, this 
step doesn’t require energy. Furthermore, this step can be 
regulated through phosphorylation or dephosphorylation. 
The third step is that NPC translocation of the importing-
NLS protein complex, which requires two additional solu-
ble proteins, the Ran GDP and p10 (Nigg 1997), this step 
is temperature dependent. Ran is a critical component of 
almost all known nucleocytoplasmic transport pathways. It 
has to interact with both a GTPase-activating protein and 
a small Ran-binding protein to achieve maximal GTPase 
activity (Mattaj and Englmeier 1998). Another soluble pro-
tein is p10/NTF2, which is required for efficient NLS-protein 
nuclear import in permeabilized cells (Melchior et al. 1995). 
And then AhR rapidly accumulates in the nucleus and is fol-
lowed by heterodimerization with ARNT for transcription 
(Poland and Knutson 1982). Furthermore, other studies 
show that the inhibition of AhR degradation by proteasome 
inhibitors can increase the ligand-dependent or -inde-
pendent nuclear translocation of AhR (Santiago-Josefat 
and Fernandez-Salguero 2003; Ohtake et al. 2007). On the 
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4    H. Zhou et al.

other hand, NES-dependent nuclear export is mediated by 
chromosome region maintenance 1 (CRM1) in concert with 
Ran-GTP (Nigg 1997).

Heterodimerization of AhR
When AhR binds to ligand, it is translocated to the nucleus 
and dissociates from the Hsp90 complex to form a het-
erodimer with ARNT. The AhR/ARNT heterodimer binds 
to the xenobiotic response elements (XRE) sequence in the 
promoter regions of target genes encoding drug-metabolizing 
enzymes, including CYP1A1, quinone reductase, etc., and 
alters their expression (Kikuchi et al., 2003). Furthermore, the 
results of Davarinos and Pollenz (1999) show that blockage of 
AhR degradation results in an increase in the concentration 
of AhR/ARNT complexes associated with DNA and extends 
the duration that the complex resides in the nucleus. Thus, 
we can find that the degradation of AhR protein is a critical 
component of the AhR-mediated signal transduction path-
way. Moreover, the release and degradation of AhR/ARNT 
heterodimer from the XRE sequence of target genes is very 
important for the regulation of AhR activity; however, the 
precise mechanism still remains elusive. Up to date, there 

are several mechanisms by which AhR signaling may be 
down-regulated. One mechanism involves ligand-dependent 
degradation of AhR protein through a proteasomal pathway 
(Wentworth et al. 2004); namely, the activated AhR is quickly 
exported to the cytosol where it is degraded by the 26S pro-
teasome (Pollenz 2002). However, the results of Roberts and 
Whitelaw (1999) indicate that AhR can also be degraded 
within the nucleus by a 26S proteasome-dependent manner. 
Other mechanisms by which AhR-dependent signaling can 
be reduced involve transcriptional repression of AhR target 
genes. AHRR may play a role in releasing the AhR/ARNT 
heterodimer from the XRE sequence, facilitating its degrada-
tion. Additionally, AHRR expression is induced by a variety 
of AhR agonists, such as benzo[a]pyrene (BaP), 3,3′,4,4′,5- 
pentachlorobiphenyl (PCB-126), and benzo[k]fluoranthene 
(BkF) (Evans et al. 2005). Collectively, we can find that the 
release and degradation of AhR/ARNT heterodimer accom-
panied with the AhR agonists may enter into the nucleus, and 
this may be an important defence mechanism of the organ-
ism for adapting the environmental pollution.

Aryl hydrocarbon receptor repressor (AHRR) is an AhR-
related protein, and represses the transcription activity of AhR 
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by competing with AhR for heterodimer formation with ARNT 
and subsequently for binding to the XRE sequence (Mimura 
et al. 1999). These results indicate that AhR and AHRR form a 
regulatory feedback loop (Mimura and Fujii-Kuriyama 2003). 
Recently, Evans et al. (2008) proposed a mechanism of AHRR 
action involving ‘transrepression’ of AhR signaling through 
protein–protein interactions rather than by inhibition of the 
formation or DNA binding of the AhR-ARNT complex. In the 
future, targeted knock-down of one or both AHRR proteins 
by application of morpholino oligonucleotides can be used 
to further characterize these duplicate zebrafish AHRRs and 
to elucidate their potential roles in development and in the 
developmental toxicity of chemicals such as TCDD.

ARNT and AHRR proteins show HLH and PAS as two 
conserved domains. PAS domains can also govern target 
gene specificity of different heterodimers (Zelzer et al. 1997). 
Dimers of individual PAS proteins bind specific DNA target 
sequences in interactions that involve the basic region (Bacsi 
and Hankinson 1996) and possibly additional distinct regions 
of a protein (Pongratz et al. 1998), enabling transcriptional 
activation or repression.

Now, although it remains to be studied how AhR and 
AHRR are involved in the other TCDD-induced biological 
effects such as teratogenesis and immunosuppression. It is 
well known that these adverse biological effects are caused 
by untimely activation of gene expression by ligand-activated 
AhR and AHRR in the biological processes.

Induction of Cyp1a
The ligand–AhR–ARNT heterodimer interacts with AhR 
response elements (AhREs; also known as XREs or DREs) to 
activate or repress gene expression from target genes (Hahn 
et al. 2005; 2006). The best characterized targets of the AhR 
pathway are Cytochrome P4501a (Cyp1a) genes, which are 
strongly induced by TCDD and PAHs (Whitlock 1999). They 
have a broad affinity for polycyclic, aromatic hydrocarbons, 
as well as aromatic amines, and some endogenous substrates 
(Gonzalez and Kimura 2003; Teraoka et al. 2003). Also, they 
play a central role in biotransformation, detoxification, 
and elimination of various structurally diverse xenobiotics 
(Monostory and Pascussi 2008). The induction of Cyp1a family 
member expression is regulated by a heterodimer composed 
of the AhR and ARNT (Fujii-Kuriyama and Mimura 2005). In 
contrast, the expression of Cyp2, 3, and 4 family members 
is regulated by the nuclear receptors CAR (Constitutive 
Androstane Receptor), PXR (pregnenolone X receptor), and 
PPAR (Peroxisome proliferator activated receptor), respec-
tively (Waxman 1999).

The induction of Cyp1a is an important step in the 
response to POPs, some researchers have identified several 
consensus response elements; there are eight potential xeno-
biotic response elements (XREs) in the promoter region of the 
European flounder Cyp1a gene, but not all of these sequences 
are necessarily for activation, just only four out of eight dif-
ferent XREs are functional in the regulation of Cyp1a. The 
activity of these response elements enhances the evidence 
for considerable diversity in vertebrate Cyp1a regulation 

(Lewis et al. 2004). In a word, we can conclude that the AhR 
pathway plays a pivotal role in the regulation process of POPs 
toxicology in fish.

The expression pattern of AhR pathway genes 
in zebrafish

There are several gene types of each AhR pathway gene in 
zebrafish. For better understanding of the toxicology mecha-
nism of POPs in fish, we summarized and discussed the iso-
form numbers and expression pattern of AhR pathway genes 
in zebrafish (refer to Table 1).

Expression pattern of Hsp90
Hsp90 protein is well conserved within aquatic animals, 
there are two types of Hsp90 genes within the fishes, namely 
Hsp90a and HSP90b, which encode two similar cytosolic 
isoforms (Moore et al. 1987; Krone and Sass 1994). Despite 
marked similarities between the two genes at a molecular 
level, Hsp90α and Hsp90β exhibit different patterns of expres-
sion during embryonic development and cell differentiation, 
and also in response to environmental stress (Csermely et al. 
1998). As far as the zebrafish is concerned Hsp90α gene is 
strongly expressed following heat shock, whereas the Hsp90β 
is only weakly up-regulated under similar stress conditions 
(Krone and Sass 1994). These results reveal both functional 
similarities and key functional differences in the individual 
members of this protein family (Taherian et al. 2008).

Expression pattern of AhR
Fishes have more AhR genes than other vertebrates because 
they have retained AhR2 genes and because of a fish-specific 
whole-genome duplication event in their early evolutionary 
past (Hahn et al. 2006). The structural and functional diversity 
of AhR proteins may confer species- and strain-specific differ-
ences in the sensitivity to toxic AhR ligands (Hahn et al. 2005), 
and it is possible that numerous, possibly diverse, physiologi-
cal roles are partitioned among multiple AhRs and AHRRs.

AhR is an ancient protein, which is well conserved in 
vertebrates and invertebrates, indicating its pivotal function 
throughout evolution (Karchner et al. 2002). Although in mam-
mals the single AhR (AhR1 ortholog) is required for TCDD 

Table 1.  Isoform numbers of AhR pathway genes and the expression pat-
terns of zebrafish. This table mainly summarized the expression patterns of 
the four genes (Hsp90, AhR +, ARNT, and CYP1A) which distribute in four 
steps in zebrafish: including formation of cytosolic complex, translocation 
of AhR, dimerization of AhR, and induction of Cyp1A, and the isoform 
numbers of AhR pathway genes within different phylogeny group (mainly 
comprised of mollusc, amphibian, fish, and aquatic mammal).

AhR  
pathway 
genes

Expression 
patterns of 
zebrafish

Class

Bivalvia Amphibia Euteleostomi Mammalia

HSP90 1 2 2 2 Hsp90α
AhR – 2 2–6 1 AhR2

ARNT – 2 2 2 ARNT1

CYP1A – 1 1–2 2 CYP1A

‘–‘ indicates that there is no data at present.
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6    H. Zhou et al.

toxicity during development (Mimura et al. 1997), however, 
it is the AhR paralog (AhR2) that plays this role in zebrafish 
(Carney et al. 2006). Whether this is specific to zebrafish or is 
true generally in fish remains to be determined.

Expression pattern of ARNT
Zebrafish possess two ARNT genes—ARNT1 and ARNT2—
and in both cases ARNT1 appears to be the toxicologically 
most relevant partner for AhR2 (Prasch et al. 2004; Walisser 
et al. 2004). Additionally, low levels of ARNT could decrease 
the sensitivity of a particular tissue to agonist, despite high 
AHR levels (Schmidt and Bradfield 1996).

Expression pattern of CYP1A
Fishes, including zebrafish, generally possess a single CYP1A 
gene (Morrison et  al. 1995; 1998); eels and salmonids are 
notable exceptions (Rabergh et al. 2000; Mahata et al. 2003). 
Mammalians, in contrast, generally possess two paralogous 
CYP1A genes, CYP1A1 and CYP1A 2 (Kimura et  al. 1984; 
Quattrochi et al. 1985). Fish CYP1A s share significant sequence 
similarity with both CYP1A 1s and CYP1A 2s (Morrison et al. 
1995) and display a combination of catalytic functions char-
acteristic of the mammalian isoforms (Gorman et al. 1998). 
However, fish CYP1As are considered more CYP1A 1-like on 
the basis of slightly higher levels of pairwise sequence identity 
and similarities in patterns of gene expression.

Discussion

Fish species vary widely in their sensitivity to POPs, the 
number, type, and expression pattern of AhR pathway genes 
may contribute to inter-species differences in aryl hydro-
carbon toxicity, possibly through distinct interactions with 
additional PAS-family proteins. Veldhoen et al.’s (2008) results 
show that the AhR gene involves the autoimmune. Therefore, 
it may help fishes to adapt to the various stimuli of environ-
mental pollutants.

At present, we can find that most of the aquatic animals all 
conformed to the same toxicology mechanism; in contrast, 
there are some other species that are insensitive to the TCDD 
toxicity, especially at the early life stage, for example, African 
clawed frog. What causes the difference between different 
animal species remains for further study.

In addition, previous researchers just focus on one or 
a few genes in the AhR pathway. Actually, it is universally 
acknowledged that there are a series of related genes involved 
in the regulation of POPs toxicology, and then, which and 
how many genes are involved in the regulation, and what’s 
the relationship between them? We think that we should 
consider this issue from the whole pathway of AhR, and this 
provides a novel insight into the research of POPs toxicology 
mechanism in aquatic animals.
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