
1.  Introduction
Atmospheric brown carbon (BrC) has gained attention over the past decades due to its significant impact on 
the radiative balance of the earth, which may cause uncertainties in global radiative forcing estimation (An-
dreae & Gelencsér, 2006; Hecobian et al., 2010; Ramanathan et al., 2005; Wang et al., 2014). Biomass burn-
ing (BB) has been identified as an important source of BrC in laboratory experiments (Chen & Bond, 2010; 
Lin et al., 2016; Sengupta et al., 2018; Xie, Chen, Hays, & Holder, 2019). Many studies of regional hot spots, 
such as the Indo-Gangetic Plain in South Asia (Bikkina et al., 2017; Gustafsson et al., 2009), East Asia (De-
syaterik et al., 2013; Kirillova, Andersson, Han, et al., 2014; Yan et al., 2015), and the Amazon Basin (Mok 
et al., 2016; Rizzo et al., 2011), have demonstrated that atmospheric BrC is largely derived from the com-
bustion of biomass fuels and regional forest fires. However, BrC also originates from sources other than BB, 
such as fossil fuel combustion (FF; Healy et al., 2015; Olson et al., 2015; Yan et al., 2017) and the secondary 
formations (Liu et al., 2016; Nguyen et al., 2013; Xie, Chen, Hays, Lewandowski, et al., 2017), complicating 
BrC source apportionment in the actual atmosphere. Furthermore, the phenomenon of long-range BrC 
transport has been widely observed and reported. For example, the long-range transport of BB organic 
aerosols (BBOA) can result in BrC occurrence in urban areas (Healy et al., 2015; Liu et al., 2019; Wang, Ye, 
et al., 2019), plateau regions (Wang et al., 2018; Wang, Hu, et al., 2019), and arctic areas (Barrett & Shees-
ley, 2017; Stohl et al., 2006), where BB events are unlikely to occur. However, a recent study noted the nearly 
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complete loss of BrC during the transport of wildfire aerosols (>7,000 km away within about 2 weeks), in-
dicating a very minor direct radiative effect of wildfire BrC on the global average (Zheng et al., 2020). Thus, 
estimating the contributions of transported BrC is important for radiative forcing modeling at regional and 
global scales (Ramanathan et al., 2007).

Generally, previous studies have used organic tracers, inorganic ions, and radiocarbon as indicators to qual-
itatively explain the sources of BrC (Huang et al., 2018; Kirillova, Andersson, Han, et al., 2014; Kirillova, 
Andersson, Tiwari, et al., 2014; Wu et al., 2019; Yan et al., 2015). Recently, BrC source apportionment has 
been performed using on-line aerosol mass spectrometry based on positive matrix factorization (PMF) solu-
tions of aerosol chemical composition combined with multivariate linear regression (MLR) models (Qin 
et al., 2018; Wang, Ye, et al., 2019; Washenfelder et al., 2015). Each of these methods has its limitations, and 
the accuracy and credibility of the results depend largely on the accuracy of organic aerosol source appor-
tionment. For example, the chemical species used as PMF inputs always have multiple sources and may be 
unstable, which could lead to underestimation (Gensch et al., 2018; Zong et al., 2016). Though radiocarbon 
(14C) method could avoid the shortcomings of traditional PMF and provide accurate source contributions 
from fossil (e.g., coal and liquid FF) and non-fossil (e.g., biogenic emissions and BB) carbon (Szidat, 2009), 
the single use of 14C analysis could not able to obtain more detailed source information (e.g., secondary 
source contributions). Therefore, combined use of the PMF model and 14C analysis could provide better 
source information than either of the two. Recent studies also have indicated that the offline PMF method 
coupled with 14C analysis could provide clear insights into the source apportionment of water-soluble OC 
(Huang et al., 2014; Zhang et al., 2018). In this study, we do PMF performance by adding 14C results as input 
species to obtain a more reasonable and accurate source apportionments of atmospheric organic aerosols.

The effects of long-range dynamic transport can be estimated using two naturally occurring radionuclide 
tracers, beryllium-7 (7Be) and lead-210 (210Pb). The natural cosmogenic radionuclide 7Be, with a half-life of 
54 days, is produced in the stratosphere and upper troposphere via spallation of atmospheric carbon, oxy-
gen, and nitrogen. 210Pb has a longer half-life of 22.3 years and is the decay product of gaseous radon-222. 
Radon-222 is almost entirely produced from radium, which is ubiquitously present in soils, with marine 
systems contributing only 1% of soil-emitted radon-222 to the atmosphere (Grossi et al., 2016; Lin, Huh, 
et al., 2014). These two radionuclides are immediately attached to submicron aerosol particles after enter-
ing the atmosphere and are removed mainly through depositional processes. The unambiguous sources 
and stable chemical properties make these radionuclides useful indicators of continental transport and the 
stratosphere-troposphere exchange processes affecting submicron aerosols (Grossi et  al.,  2016; Hammer 
et al., 2007; Lin, Huh, et al., 2014).

Lying below the Tropic of Cancer and on the coast of South China, Guangzhou (GZ) has a typical mon-
soon-controlled climate that is mainly affected by marine and continental air masses, with wet and hot 
conditions in summer (summer monsoon, marine air mass dominant) and dry and cool conditions in win-
ter (winter monsoon, continental air masses dominant). In particular, the geographical location and cli-
mate of GZ provides a unique opportunity to assess how long-range transport impacts the light-absorption 
properties of BrC. In this study, (a) a carbon-isotope-based method and the PMF-MLR model are coupled 
to quantitatively differentiate and identify the sources of total soluble BrC in the atmosphere; and (b) the 
factors that influence the BrC transported to the observation site were estimated using 210Pb and 7Be. Our 
findings provide new insights into the sources of BrC, including local emissions and regional transport, and 
the contributions of transported BrC are estimated based on 210Pb for the first time.

2.  Experiments and Methods
2.1.  Sampling and Pretreatment

Sampling was conducted from July 2017 to June 2018 at the Guangzhou Institute of Geochemistry (GIG), 
an urban site in GZ with no obvious point emission sources nearby (Liu et al., 2014). Ambient particulate 
matter (PM2.5) samples were collected on prebaked quartz fiber filters (MK360, 20.3 × 25.4 cm2; Munktell; 
preheated at 450°C for 6 h before use and weighed) over a period of 24 h with a high-volume air sampler 
(Shanghai XTrust Analytical Instruments Co., Ltd.) at a flow rate of 1 m3·min−1. Filters were wrapped with 
prebaked aluminum foil, sealed, and stored in a −20°C freezer.

JIANG ET AL.

10.1029/2021JD034616

2 of 17



Journal of Geophysical Research: Atmospheres

A total of 55 samples were selected for analysis (Table S1). The entire filters were extracted three times in 
50 mL methanol for 30 min and concentrated with a rotary evaporator to ∼3–4 mL. The extracts were then 
transferred to pre-weighed clean bottles and weighed the extracts. The extracts were stored at 4°C until 
further analysis and are defined as dissolved organic matter (DOM) in this study.

2.2.  Chemical Species Analysis and Light Absorption Measurement

The methods used for the analysis of DOM, organic and elemental carbon (OC and EC; Chen et al., 2017; 
Cheng et  al.,  2012; Jiang et  al.,  2020), water-soluble ions (Na+, NH4

+, K+, Cl−, SO4
2−, NO3

−) (Mo 
et al., 2018, 2017), monosaccharides (levoglucosan, mannosan, galactosan) (Jiang et al., 2018), organic trac-
ers of secondary organic aerosols (SOA) (Li et al., 2013), polycyclic aromatic hydrocarbons (PAHs), and n-al-
kanes (Geng et al., 2020; Mao et al., 2018) were similar to those reported in previous studies and details are 
provided in Text S1 and Table S2. Approximately 1/20 of the total mass of DOM was transferred and brought 
to a volume of 15 mL. After filtering through 0.22-μm hydrophobic polytetrafluorethylene membranes, the 
light-absorption spectra of the DOM were obtained using an ultraviolet (UV)-visible spectrometer (UV-
4802; Unico) over the range of 250–800 nm at an interval of 0.5 nm with an accuracy of 10 nm. Prior to 
analysis, the corresponding solvent was analyzed to obtain a zero value for abundance. The absorbance of 
field blank sample extracts was also measured and subtracted from the measurements of all PM2.5 samples. 
The methods for calculating the parameters, including light absorption coefficients (Abs365) and mass ab-
sorption efficiency (MAE365) of DOM at 365 nm, as well as the absorption Ångström exponent (AAE), are 
presented in Text S2. The Abs365 was used in this study as BrC proxy for characterizing the BrC absorption.

2.3.  Isotope Analysis

Each PM2.5 sample was folded and placed into a 75 × 50-mm plastic box, and the 7Be and 210Pb levels were 
analyzed using a high-purity γ spectrometer equipped with an HPGe detector (GEM-C5970; ORTEC, USA). 
7Be and 210Pb were qualitatively and quantitatively analyzed based on characteristic γ-rays (Text S4). These 
samples were analyzed at Shenzhen University, and details of the instrument and calibrations were report-
ed in a recent study (Liu et al., 2020).

Extracts with appropriate carbon contents were spiked into clean tin cups, evaporated under gentle nitro-
gen flow (20–40 min), and then crushed into a ball for the analysis of carbon isotopic composition. Carbon 
contents of 30–50 μg and >200 μg were used for analysis of stable and radiocarbon isotopes (δ13C and Δ14C), 
respectively. The analytical procedure and instruments were described in a previous study (Mo et al., 2018). 
Notably, the analytical error for stable carbon isotope ratios was within 0.2‰ (the relative standard devia-
tion was less than 1%). 14C analysis was carried out at the State Key Laboratory of Organic Geochemistry of 
GIG (Zhu et al., 2015). The 14C values obtained were expressed as fractions of modern carbon (fm) and con-
verted into fractions of non-fossil carbon (fnf) using the correction factor 1.052 ± 0.013 based on the long-
term time series of 14CO2 at the background station (Levin & Kromer, 2004; Levin et al., 2013). Standards of 
known age were measured as replicates to determine the instrumental error, whereas the uncertainty of fm 
for DOM was obtained through error propagation that included uncertainties in the DOM concentration, 
the variability of the reference fm, and the measurement uncertainty of fm,DOMblanks.

2.4.  PMF and MLR Analyses

The EPA5.0 PMF receptor model was used here to determine the sources of DOM. The non-fossil and fossil 
fractions of DOM, DOMnf and DOMff, which were calculated from the 14C results, were added to the PMF 
model as primary constraints to obtain a reasonable solution. Details of the PMF method, data preparation 
and selection are provided in Text S3. As the PMF model generally requires a large data set and may produce 
large uncertainties (Li et al., 2020; Zong et al., 2016), a 14C result constrained PMF model was applied here, 
as 14C analysis can quantitatively differentiate fossil and non-fossil sources of OC (Wang, Zong, et al., 2017). 
In this study, the combination of bootstrapping and displacement techniques, Q values (Figure S2), scaled 
residuals and source profiles, as well as the high match rate (≥80%) between bootstrapping and base case 
factors, a five-factor solution was chosen finally due to the interpretability of these factor profiles (Table S6). 
During the constraint procedure, fossil fuel-derived DOM (DOMff) in the BB factor was set to zero, and 
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non-fossil DOM (DOMnf) was set to zero for the FF factor. Additional constraint types, such as the pull-up 
and pull-down constraints included in the model, were also used for DOMnf and DOMff in the secondary 
factors. Using this constraining method, our results showed that the relative error of predicted fnf to meas-
ured fnf for most samples was below 40% (Figure S4; calculation method discussed in Text S3). The five-fac-
tor solution obtained from the constrained run was used to represent source apportionment outcomes in 
the following discussion.

Considering that the measured light-absorption coefficient, Absi,j (i, sample date; j, wavelength [Mm−1]), 
can be expressed as the time series of mass concentrations for each factor, Fi,k (k, factor number [μg·m−3]), 
we multiplied each factor with its time series of mass absorption efficiency (MAEk,j [m2·g−1]) (Equation 1).

 , , ,Abs ·MAEi j i k k j ijF e� (1)

In this study, MLR was used to estimate the impacts of specific DOM sources on light-absorption properties 
(j = 365 nm) (Geng et al., 2020; Qin et al., 2018; Washenfelder et al., 2015). Light-absorption properties were 
treated as the dependent variables, and sources were independent variables. Data analysis was performed 
using SPSS version 21 (IBM Corporation) with the backward elimination approach. A t-test was used to 
assess the significance of the impact of each source in the model on the estimation of light-absorption 
properties.

2.5.  Air Trajectory Generation

As shown in Figure 1 and Table S1, 7-days backward trajectories were generated using the Hybrid Single 
Particle Lagrangian Integrated Trajectory (HYSPLIT) model (https://www.ready.noaa.gov/HYSPLIT.php). 
Meteorological data was download from ftp://arlftp.arlhq.noaa.gov/pub/archives/. Trajectories were calcu-
lated for air masses starting from the sampling site at 500 m above ground level with 6-h intervals during 
the 24-h sampling period. Then, all trajectories were classified into four clusters according to the origins of 
the air masses and their transport pathways using the cluster calculation function in the software, including 
marine-origin air masses (summer monsoon period) from the Western Pacific and South East Asia regions, 
and continental-origin air masses (winter monsoon period) from Mongolia and Central Asia.

3.  Results and Discussion
3.1.  Temporal Variations of DOM's Light-Absorption Properties.

The annual mean concentration of DOM in GZ is 5.46 ± 3.07 μg C·m−3 (Table S2). Radiocarbon isotope 
analysis showed that, on average, 51 ± 8% of DOM originated from non-fossil sources. The annual average 
values of Abs365, MAE365, and AAE were 5.4 ± 4.0 M·m−1, 0.95 ± 0.33 m2·g−1 C, and 5.7 ± 0.5, respectively. 
Notably, the definition of DOM used here is the same as that used for the methanol-extracted fraction, 
which is considered a better estimator of BrC than water-soluble organic carbon alone. Table S3 provides 
comparison of the light-absorption properties of DOM in this study with those obtained from methanol 
extracts in recent studies conducted in other parts of the world. The Abs365 and MAE365 values in this study 
are lower than those in places with poor air quality, such as Beijing (Cheng et al., 2016; Yan et al., 2017) 
and Xi’an (Huang et al., 2018; Shen, Zhang et al., 2017) in northern China, but higher than those in rela-
tively clean places, such as the southeastern United States (Liu et al., 2013; Xie, Chen, Holder, et al., 2019) 
and plateau regions (Wu et al., 2019; Zhu et al., 2018). The AAE values was in the range associated with 
laboratory generated SOA (5.2–8.8, including both biogenic and anthropogenic SOA) (Jiang et al., 2019; 
Lambe et al., 2013; Yan et al., 2016) and were comparable to those of methanol-extracted fractions measured 
in the southeastern United States (4.2–5.5 ± 0.9), (Liu et al., 2013; Xie, Chen, Hays, & Holder, 2019), but 
lower than those of methanol-extracted fractions from open BB emissions (6.0 ± 0.2 to 7.8 ± 3.2) (Cheng 
et al., 2016, 2017; Huang et al., 2018; Shen, Zhang et al., 2017; Yan et al., 2017) and fresh-emitted aerosols 
(6.29 ± 2.25 to 10.18 ± 1.27) (Chen & Bond, 2010; Li et al., 2018; Xie, Hays, & Holder, 2017; Yan et al., 2017).

Figure 2a shows the annual variations of the light-absorption properties (including Abs365, MAE365, and 
AAE) and carbon contents of DOM. The annual trend of DOM carbon content matched well with those of 
Abs365 and MAE365, exhibiting clear seasonal variations, with enhanced values in fall and winter (October 
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to February) and lower values in spring and summer (March to September), probably indicating that the 
factors driven the variation of BrC absorption (Abs365), MAE365 and DOM are similar. The seasonal changes 
in DOM content and light absorption are mainly affected by emission sources, atmospheric oxidation, and 
air mass origins. GZ is located in the East Asian monsoon region, where north and northeast winds prevail 
during the winter monsoon, while southeast and southwest winds prevail during the summer monsoon. 
In the winter monsoon period, when Abs365 and MAE365 have higher values, backward trajectory analysis 
showed that the air masses mainly originated from the Asian continent and enter GZ through the eastern 
and northern parts of Guangdong province (Figure 1 and Table S1). During this period, the concentrations 
of ΣSH (hopanes and steranes) and levoglucosan, which are biomarkers of primary FF and BB, respectively, 
showed significant increases, indicating that the increase in DOM content and BrC absorption are likely 
associated with elevated levels of primary FF- and BB-origin pollutants. Notably, our 14C results indicated 
that the fraction of non-fossil DOM reached its maximum (69%) although the concentrations of both fossil 
and non-fossil DOM increased significantly in winter. Partial correlation analysis indicated that Abs365 had 
a non-significant association with fossil-derived DOM during winter, indicating that FF likely has little 
influence on the variations of BrC absorption. Similarly, MAE365 was significantly related to levoglucosan 
(r2 = 0.44, p < 0.01), but not significantly related to ΣSH (p > 0.05). In China, open straw burning during the 
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Figure 1.  The location of the sampling site (Guangzhou) in this study. The backward trajectory types were clustered 
into four types based on their original places, including Southeast Asia (SEA), West Pacific (WP), Mongolia (MG) 
and Central Asia (CA) with occurrence percentage of trajectories ending at the sampling site during the entire 
sampling period are denoted. The classification for clustered air mass origins by data and season is shown in Table S1. 
The 7-days backward trajectories for each season are also shown. The map was drawn using ArcGIS software, and 
the base map is the National Geographic Style Map from ESRI (http://www.arcgis.com/home/webmap/viewer.
html?webmap=8e75aab506924d0cbf6266268135aa80).
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harvest season and combustion of biofuels or agriculture waste during winter are widespread. Air masses 
transported to GZ in the harvest season and winter have passed through areas with intense BB according to 
fire counts (Figure S1). In those seasons, the MAE365 values generally exceeded 1.0 m2·g−1 C and the highest 
values reached 1.94 m2·g−1 C, which is comparable to bulk methanol extracts from sites influenced by BB, 
such as Beijing (1.24 ± 0.24 to 1.46 ± 0.24 m2·g−1 C) (Cheng et al., 2016; Cheng et al., 2017; Yan et al., 2017), 
Xi’an (1.33 ± 0.34 m2·g−1 C) (Huang et al., 2018; Shen, Lei et al., 2017), and Seoul (1.02–1.18 m2·g−1 C) (Kim 
et al., 2016). Together, these results indicate that the increases in BrC absorption and MAE365 values in fall 
and winter are mainly related to elevated BBOA.

During spring and summer (March to September), relatively low Abs365 and MAE365 levels were observed 
in GZ. The air masses transported to GZ during those seasons had passed over the South China Sea or the 
Western Pacific, and carried relatively clean air (Figure 1 and Table S1). At this time, FF sources, such as 
vehicle emissions and coal combustion, may be the primary local emission source of DOM (Dai et al., 2015). 
Furthermore, SOA formed easily during the summer monsoon period due to high temperature and relative 
humidity, strong sunlight, high atmospheric oxidation levels, and high VOC emissions (Ding et al., 2012). 
The MAE365 values (generally less than 1.0 m2·g−1 C) at this time were similar to those of vehicle emissions 
and laboratory-generated SOA (Table S7), indicating the possible influences of vehicle emissions and bio-
genic SOA formation on BrC during summer because of the high biogenic emissions and high contribution 
of vehicle emissions to PM2.5 in Guangzhou (Dai et al., 2015). We found that the seasonal changes in the 
contribution of fossil emissions to DOM was insignificant, while relatively low BB emissions occurred in 
spring and summer; these findings were supported by the similar ΣSH/DOM ratios for the winter and sum-
mer monsoon periods (0.5 ± 0.3 vs. 0.6 ± 0.2 ng·μg−1 C). Meanwhile, a marked decrease was observed in the 
levoglucosan/DOM ratio from 10.07 ± 6.8 ng·μg−1 C during the winter monsoon to 5.1 ± 3.1 ng·μg−1 C in 
the summer monsoon, suggesting that the lower MAE365 values of the summer monsoon period are likely 
related to low BB emissions, and the source of BrC probably can be attributed to FF. Moreover, high con-
centrations of biogenic tracers, namely isoprene- and monoterpene-derived SOA, were also observed during 
the summer monsoon period (Figure 2b). Generally, BrC generated from biogenic precursors has a lower 
absorption capacity than that anthropogenic precursors and BB (Table S7). Therefore, our results indicate 
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Figure 2.  Temporal variations in (a) light absorption properties (Abs365, MAE365 and AAE) and carbon contents of DOM, mass concentrations of (b) biogenic 
SOA tracers (B-SOA), levoglucosan (levo) and sum of steranes and hopanes (ΣSH). The biogenic SOA tracers (B-SOA) include isoprene- (MTLs: sum of 
2-Methylthreitol and 2-Methylerythritol) and monoterpene-derived SOA (Mono-SOA: sum of 3-Hydorxyglutaric, 3-Methyl-1,2,3-butanetricarboxylic acid, cis-
Pinonic acid). DOM, dissolved organic matter.
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that the relatively low BrC absorption at GZ during the summer monsoon period may also be related to the 
high levels of biogenic SOA processes. Of course, the high relative humidity, solar radiation, atmospheric 
oxidation levels during summer which can promote the photochemical bleaching of the chromophore, 
probably are other important factors that lead to the low BrC absorption, while the validation of this idea 
is out of our scope.

3.2.  Sources Apportionment of DOM

To further quantitatively determine the sources of DOM and BrC, we applied a 14C-constrained PMF model. 
Using 14C results as a constraint can reduce the uncertainty (over- or underestimation) arising from PMF 
source apportionment (Li et al., 2020; Zong et al., 2016). Figure S3 shows the factor profile and time series 
of factor contributions to DOM for the five-factor solution obtained using the 14C-constrained PMF model, 
which includes two primary factors, BB and FF, as well as three factors (NT, PW-SOA, and ISO + OS, de-
fined as follows) associated with secondary processes. NT represents facor that has high loading of nitrates 
and ammonium, which should be associated with secondary nitrate formation. PW-SOA is associated with 
the combination of SOA formation from photochemical processes and waste combustion, as SMG acids 
(sum of succinic acid, malic acid and glutaric acid), o-/m-phthalic acid, and monoterpene SOA can be 
products of photochemical processes, and p-phthalic acid is an indicator of waste combustion, especially 
plastic combustion (Kawamura & Pavuluri, 2010). ISO + OS has high loadings of isoprene-derived SOA, 
SO4

2− and fatty acids, and thus may be classified as a mixed factor of isoprene-derived SOA and organic 
sulfates. As shown in Figures 3a and S3, the highest average contribution to DOM was from the primary 
factor FF, which was responsible for 32% of total DOM and showed small changes in concentration across 
the year, suggesting relatively stable emissions from FF sources. GZ is one of the largest cities in China, rel-
ative stable vehicle emissions and industrial coal combustion could account for >50% of total PM2.5 (http://
www.gz.gov.cn/xw/zwlb/bmdt/ssthjj/content/post_5516998.html). And therefore, it is reasonable that FF 
sources are important sources of DOM in this study, though the DOM may only account a small fraction of 
PM2.5. BB explained 18% of the DOM and showed a marked increasing trend from fall to winter, consistent 
with other studies of OC apportionment in this region (Huang et al., 2014; Wang et al., 2015). In total, SOA 
factors were responsible for 50% of DOM mass, most of which was contributed by NT (20%) and ISO + OS 
(22%), while PW-SOA only accounted for 7% of DOM. DOM formed from NT showed higher concentra-
tions in fall and winter, while the opposite pattern was observed for DOM formed from ISO + OS, which 
had lower concentrations in winter than in other seasons. Our results are comparable to those reported in 
previous studies, which found that secondary OC comprised a large fraction of OC in the Pearl River Delta 
region (Huang et al., 2014; Qin et al., 2017; Wang, He, et al., 2017), highlighting the importance of SOA to 
atmospheric organic matter. We noted that the secondary factors were also assigned to fossil and non-fossil 
fractions based on the built-in multilinear engine used by PMF (Norris et al., 2014). Therefore, we calculat-
ed the contents of fossil and non-fossil secondary DOM, and the calculation method is presented in Text S3. 
As shown in Figures 3b and 3c, our results further indicate that secondary DOM in GZ was dominated by 
non-fossil carbon, with an average 69 ± 8% of secondary DOM, comparable with previous works (Huang 
et al., 2014; Zhang et al., 2018). Notably, the content of non-fossil DOM obtained from our 14C-constrained 
PMF model had a strong correlation with the measured values (r = 0.86, p < 0.01, Figure S4a & b), showing 
an average relative error of less than 40%. In general, our results show that the 14C-constrained PMF model 
can relatively accurately determine the sources of atmospheric DOM, providing a strong foundation for BrC 
source apportionment.

3.3.  Possible Source Contributions to BrC Adsorption

Although several studies have characterized BrC absorption properties in GZ, the detailed source contribu-
tions to BrC absorption remain unclear (Liu et al., 2018; Qin et al., 2018). To determine the specific source 
contributions to BrC absorption, we further employed MLR analysis to assign BrC absorption to the five fac-
tors obtained from PMF (BB, FF, NT, PW-SOA, and ISO + OS), as shown in Equation 2(Geng et al., 2020). 
For BrC formed through secondary processes, we only considered the formation pathways, regardless of the 
fossil or non-fossil source of its precursor, as a given formation pathway may usually generates secondary 
BrC with similar structures or functional groups.
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     365 NT FF BB PW SOA ISO OSAbs ,aC bC cC dC eC� (2)

where the coefficients a, b, c, d, and e represent the MAE of each factor (m2·g−1) and CNT, CFF, CBB, CPW-SOA, 
and CISO + OS represent the mass concentration of each factor. The final model is reasonable (N = 55) with an 
r of 0.97 and mean error between predicted and measured Abs365 of 17% (Figure S4c & S4d). The modeled 
MAE365 values for each factor are presented in Table S7 and our results align well with those reported from 
previous laboratory experiments and field studies. However, MAE365 values obtained from the regression 
model have uncertainties arising from measurement error, interpolation of data, source apportionment, or 
possibly from incomplete source information in the PMF model (Bates et al., 2015).

Figure 4a shows the time series of BrC absorption for the 5 factors and their mean contributions to the total 
modeled Abs365. The primary emission factor of FF accounted for the highest average proportion (33.7%) 
of total BrC absorption in this study. Due to the relatively large and stable FF emissions from vehicles and 
power plants throughout the year, FF is the main contributor to BrC absorption in GZ. To date, few stud-
ies have reported the contribution of FF to BrC in the atmosphere. Our results show that although DOM 
from BB accounts for only 18% of total DOM by mass, it contributes 27.3% of total Abs365, in accordance 
with the findings of a previous study conducted in GZ (26% at 370 nm) (Qin et al., 2018). The ratio in GZ is 
lower than those in BB-influenced areas, such as Beijing (58%) (Du et al., 2014), Atlanta (50%) (Hecobian 
et al., 2010), and Alabama (87%) (Washenfelder et al., 2015), but higher than that in a less-polluted region 
of North Carolina (14%) (Xie, Chen, Holder, et al., 2019). Furthermore, we found that the contributions of 
secondary sources to total BrC absorption in Guangzhou (39%) was in the range measured in the wintertime 
of North China cities (λ = 370 nm, 19%–48%), but much lower than those recorded on the Tibetan Plateau 
(70%) and Hong Kong (76%) (Wang, Han, et al., 2019; Wang, Ye, et al., 2019; Zhang et al., 2020), highlight-
ing the dominant contribution of primary BrC in Guangzhou and the nonnegligible contributions from 
secondary BrC. Among secondary sources, NT is the most important source of secondary BrC, accounting 
for 16.4% of total BrC absorption. Although ISO + OS was responsible for a relatively large fraction of DOM 
mass, the BrC formed through this secondary process only accounted for an average of about 9% of total 
BrC absorption, likely due to the weak light-absorbing capacity of biogenic SOA (Fleming et al., 2019; Lin, 
Budisulistiorini, et al., 2014; Xie, Chen, Hays, Lewandowski, et al., 2017).
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Figure 3.  Average contribution of each factors to the (a) DOM and (b) secondary DOM. (c) The time-series of non-fossil fraction of secondary DOM. 
Calculation methods are presented in Text S3. The “nf” and “ff” denote non-fossil and fossil fuels fractions. DOM, dissolved organic matter.
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The seasonal trends of BrC absorption attributed to the five sources are similar to those of their DOM. The 
BrC absorption associated with FF changed insignificantly throughout the year, while BB and NT showed 
increases in contributions to BrC absorption during the winter monsoon period. Backward trajectory anal-
ysis showed that continental air masses were dominant in the winter monsoon period (Figure 1 and Ta-
ble S1). As shown in Figure 4b, the absorption contribution of BB varied markedly among trajectory clusters 
and was dominant in continental-origin air masses from Mongolia and Central Asia, which had levels 3–4 
times than those of marine-origin air masses. Considering several previous studies have reported that the 
main driver of air pollution in GZ was probably related to allochthonous inputs (Andreae et al., 2008; Liu 
et  al.,  2014), our finding indicates a possible influence from continental BBOA transport during winter 
when BrC is elevated.

3.4.  Characterize the BrC Transport Processes With 210Pb and 7Be.

As described above, enhanced atmospheric BrC absorption in GZ during the winter monsoon period could 
be largely due to allochthonous inputs. 210Pb is one of the most effective indicators for characterizing the 
transport of submicron aerosols from continents, which can be used to estimate the influence of terrestrial 
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Figure 4.  (a) The time-series of Abs365 contributed by each factor. The pie chart shows the average contribution of each 
factor to the light absorption. (b) The relative contribution of each factor to the total BrC absorption for the different air 
masses clusters. The four backward trajectory clusters include Southeast Asia (SEA), West Pacific (WP), Mongolia (MG) 
and Central Asia (CA).
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aerosol transport on receptor sites. Overall, the annual variations of 210Pb indicated that their concentra-
tions increased from fall to winter and then decreased in spring (Figure 5), consistent with the variations in 
Abs365 observed during the sampling campaign. The average activity concentration of 210Pb on days influ-
enced by continental air masses was double that on days affected by marine air masses (Table S4). Notably, 
the decreased planetary boundary layer height (PBLH) in fall and winter may lead to misjudgment of the 
input of allochthonous particles. A previous study reported that 210Pb is relatively insensitive to short-term 
variations in PBLH (Hammer et al., 2007). In this study, as shown in Figure S5, the PBLH showed character-
istic low levels in fall and winter and high levels in spring and summer. Regardless of changes in PBLH, the 
activity of 210Pb was relatively constant in spring and summer; meanwhile, in fall and winter, the PBLH was 
relatively stable but the activity concentration of 210Pb varied widely. Moreover, the ratios of 210Pb to PM2.5 
were also higher during the winter monsoon season (0.05 ± 0.02 mBq·μg−1) than the summer monsoon 
season (0.03 ± 0.02 mBq·μg−1). These results support the role of allochthonous inputs as one of the main 
drivers of the increase in atmospheric particulate matter and BrC absorption during the winter monsoon 
period in GZ.

During the prevailing winter monsoon season, we observed positive correlations of the concentration of 
210Pb with measured Abs365 (r = 0.68, p < 0.01), non-fossil DOM (r = 0.71, p < 0.01), and the concentration 
of levoglucosan (r = 0.64, p < 0.01, Figure S6), confirming that the main reason for the increase in BrC 
absorption in GZ during the winter monsoon is likely related to allochthonous inputs of BBOA. In con-
trast, during the summer monsoon season, insignificant correlation was found between 210Pb and Abs365 
(r = 0.39, p > 0.05), indicating that BrC may mainly originated from local primary and secondary sources.

However, we noted that high 210Pb was not always accompanied by high BrC absorption (Figure 5). For 
example, high 210Pb in conjunction with low Abs365 and low DOMnf was observed on December 28, 2017 
(point A). In this case, 7Be, a useful indicator for characterizing the upper atmosphere and surface exchange 
processes, was high. Backward trajectory analysis showed that a strong cold Siberian air mass intruded into 
China and sank in South China due to high wind speed. This probably suggests that invading Siberian air 
masses carry less pollution, which leads to dilution and diffusion of local pollutants, resulting in decreases 
in the particle concentration and BrC absorption. Considering that transport processes include ground-lev-
el transport and long-range processes in the upper atmosphere, we introduced the index of f (7Be, 210Pb), 
which combines 7Be and 210Pb to reveal the effects of atmospheric transport on variations in light absorp-
tion. The f (7Be, 210Pb) index was defined as follows in a previous study (Graustein & Turekian, 1996):

 
 
 

      

7
7 210

7 210
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Be Pb
f

n
� (3)
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Figure 5.  Annual variability trends of 7Be and 210Pb at GZ. The insert shows the variations of f (7Be, 210Pb) ratios and 
the Abs365 during the period II which from Nov.8, 2,017 to Jan. 25, 2018 at GZ. The point A, B and C are marked by gray 
shadow are typical examples. We again presented the BrC absorption and the mass concentration of non-fossil-derived 
DOM for better comparison with the two natural radionuclide tracers of 7Be and 210Pb.
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where [7Be] and [210Pb] denote the activity concentrations of the corresponding nuclides, and n is approx-
imated by the ratio of the standard deviation of [7Be] to the standard deviation of [210Pb]. Notably, f(7Be, 
210Pb) avoids the influence of precipitation scavenging and provides a useful tool for clearly understanding 
the dynamic transport of BrC. Air masses with low f(7Be, 210Pb) represent continental surface emission 
sources, whereas high f(7Be, 210Pb) values are associated with sources in the upper atmosphere (Grossi 
et al., 2016; Lin, Huh, et al., 2014). During the winter monsoon period, the trend of BrC absorption was the 
inverse of that of f(7Be, 210Pb), especially during period II, as shown in Figure 5. We found that the concen-
tration of DOMnf and BrC absorption generally decreased about 1–2 times and 2–3 times, respectively, for 
high-altitude transport (high f (7Be, 210Pb)) relative to near-surface transport (low f (7Be, 210Pb)). Two sam-
ples that exemplify this trend are denoted in Figure 5 and S7. These analyses were conducted for the aerosol 
samples collected on January 3 (point B) and 10 (point C), which correspond to surface transport (for at least 
72 h, low f (7Be, 210Pb) and high Abs365) and direct downdrafting of the upper atmosphere after long-distance 
transport from the north (high f (7Be, 210Pb) and low Abs365), respectively. Although the BrC absorption 
of aerosols collected on January 10 was markedly lower than that of samples collected on January 3, the 
MAE365 of DOM showed little change (1.31 m2·g−1 C vs. 1.39 m2·g−1 C). Generally, MAE365 decreases sig-
nificantly during long-range transport due to photochemical degradation effects (Dasari et al., 2019; Zheng 
et al., 2020). Therefore, BrC transported at high altitude should have higher MAE365 values in the initial 
source region. Compared with the samples collected on January 3, 2018, the aerosols from January 10, 2018, 
had a lower fossil fuel ratio (0.47 vs. 0.42) but a higher concentration of ΣSH (about 2.3 times), indicating 
that the important influence of primary source of FF. Although the oxidative aging of particulate levoglu-
cosan occurs during the long-range transport process (Gensch et al., 2018), the elevated non-fossil ratio 
and levoglucosan level also indicate the importance of BB. Notably, primary emissions of BB and FF are 
typically high in aerosols during the heating period in northern China (Yan et al., 2018), where the MAE365 
values of methanol extracts were 1.45 ± 0.26 m2·g−1 C (maximum: 2.07 m2·g−1 C) (Cheng et al., 2016). Ac-
cordingly, our results indicate that MAE365 values may be reduced by 10% or even more due to the effects of 
photochemical bleaching during upper-atmosphere transport processes.

3.5.  210Pb-Based Estimation of the Contribution of Atmospheric Transport to BrC Absorption

Given that the background value of 210Pb in GZ is difficult to determine, we used the average activity con-
centration of 210Pb on days influenced by marine air masses as the background value. The average activity 
concentration of 210Pb in the marine air masses was 1.03 ± 0.23 mBq·m−3. We set criteria that an activity 
concentration of 210Pb higher than 1.03 mBq·m−3 indicated the influence of transported aerosols, while 
lower values reflected only local emission sources. Thus, BrC absorption due to local emissions sources 
(Abs365(local)) during the winter monsoon period was estimated as 3.65 M·m−1 based on the linear correlation 
between measured Abs365 and 210Pb (y = 3.15X + 0.40) over the sampling period determined using the set 
background value of 210Pb. The impact of arriving air masses on the local atmospheric environment not only 
causes overlay of their components, but also chemical reactions among them. Therefore, we hypothesized 
that the measured Abs365 value was representative of the sum of local and transported BrC (i.e., reaggre-
gation on local particles), neglecting the impact of newly generated BrC, such as secondary BrC formation 
from transported VOCs. Moreover, we considered the aerosols transported with 210Pb were enough aged 
with low volatility; we only focused on the BrC ultimately transported to Guangzhou (receptor), but not on 
how BrC changed during the transport processes (e.g., photochemical enhanced and bleaching, new addi-
tion of BrC). The transported BrC can be calculated by subtracting the Abs365(local):

    365365 transport 365 localAbs Abs Abs� (4)

Figure S8 shows the estimated transported fraction of BrC absorption during the winter monsoon season. 
Note that negative values likely resulted from dilution effects, as low DOMnf was observed. The mean value 
on days of elevated BrC was 49 ± 23% (excluding negative values), showing that half of BrC absorption is 
associated with transport aerosols. Combined with the results of PMF analysis, the variations of 210Pb on 
days influenced by continental air masses were positively correlated with BrC absorption from BB and NT 
sources (p < 0.01), suggesting the transport aerosols were mainly associated with BBOA and secondary ni-
trates (Yu et al., 2020). However, we found that BrC absorption from BB was about 2–3 times that from NT 
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sources, indicating that invasive BrC was mainly contributed by primary emissions of BB. Although trans-
port processes were influenced by complex meteorological parameters such as wind direction and speed, 
our very rough estimate highlights the importance of long-range BBOA transport to BrC absorption at the 
regional scale. And more researches in accurately assessing the contribution of regional transport aerosols 
to BrC absorption or radiative forcing are needed in the future.

4.  Conclusions
In this study, PM2.5 samples were collected at Guangzhou, a big city where under the influence of oceanic 
subtropical monsoon climate. The sources of atmospheric dissolved organic matters and soluble BrC in 
PM2.5, and the key factors influencing BrC's seasonality were explored. Our results show that the prima-
ry sources of fossil-fuel combustion and biomass burning averagely contributed 32% and 18% of DOM at 
Guangzhou, respectively; the secondary process could account for 50% of DOM, with 69% of them were 
non-fossil carbon. We found that the BrC absorption increased substantially during winter monsoon, while 
decreased during summer monsoon. Correspondingly, the contributions of biomass burning and second-
ary nitrates formation to total BrC absorption increased and were dominant in winter monsoon, and fos-
sil-fuel combustion and biogenic organosulfates formation were the main contributors of BrC (Figure 4) in 
summer monsoon. Furthermore, in keeping with Abs365, levoglucosan and NO3

−, the activity concentra-
tion of 7Be and 210Pb also largely increased during winter monsoon, indicating the significance of regional 
transport of biomass burning organic aerosols and related secondary nitrates formation processes on BrC's 
enhancement.

From the regional and global scale, biomass burning happens frequently such as the seriously crops com-
bustion events in the India Plain and the wildfire in the Amazon rainforest and African grass plains. All 
these extensive biomass burning emissions formed extensive atmospheric brown clouds and would trans-
port from sources regions to everywhere of the world with air masses. The high light-absorption capacity of 
BrC will change the balance of radiative forcing and result to the climate abnormal changes as well as the 
change of hydrological cycle. Therefore, reducing the biomass burning emissions in the disaster area of the 
world is not only the urgent need for the source area, but also need the help of international cooperation.
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