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Mercury ions are crucially harmful to ecosystemand human being due to their characters of bioaccumulation and
difficulty of biochemical degradation. Therefore, development ofmercury ion detectionmethods has attracted in-
creasing interests recently. In this study, we successfully synthesized a hydroxyphenylbenzothiazole (HBT)-
basedfluorescent probeHBT-Hg in an extremely simplemanner formercuric ions detection. The spectral studies
revealed that the probe HBT-Hg could react with Hg2+ selectively and sensitively in PBS buffer (10 mM, pH =
7.40), showing ratiometric fluorescent changes from blue to light green. The response mechanism of the probe
HBT-Hg andHg2+wasfinally confirmed byHPLC analysis, viz., the probeHBT-Hg converted to its precursor com-
pound 1. Finally, the probe HBT-Hg was successfully applied in monitoring Hg2+ in living A549 cells.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The detection methods of mercuric compounds have attracted in-
creasing attentions of chemists and environmentalists due to their
fatal toxicity to ecological environment and organisms [1–4]. Several
traditionalmethods are popularly adopted for mercuric compounds de-
tection, including colorimetric, atomic absorption/emission spectros-
copy (AAS/AES), inductively coupled plasma mass spectrometry (ICP-
MS) [1]. For colorimetric analysis, its main disadvantage is that the de-
tection limit is too high,which is very unfavorable formercuric analysis.
Although the other twomethodswith high specificity and precision, the
analysismethods essentially dependon the expensive instruments, par-
ticularly unsuitable for instant and fast detection. Fluorescent probe is a
promising tool for analysis of various species in the fields of chemistry,
medicine, biology and environment, which is developing rapidly to
meet the current needs [5–22]. In recent years, a large number of Hg2
+ probes have been developed based on different fluorophores
[23–31], including coumarin, naphthalimides, rhodamine, resorufin, cy-
anine, BODIPY, and so on. Even so, there remains a lot of drawbacks to
current fluorescent probes during their practical use, such as poor
water solubility, slow response rate (especially for reaction-based
probe) aswell as low sensitivity [32]. In order to overcome these issues,
lxchen@yic.ac.cn (L. Chen).
novel fluorescent probes based on various fluorophores are still to be
developed.

The development of novel fluorescent probes depends on two
main factors, fluorescence signal transmission and recognition
sites. As signal transducers in fluorescent probes, novel fluorophores
with excellent optical performances and fine-tuning of its specific
photo-physical properties remains a profound challenge. Recently,
Hydroxyphenylbenzothiazole (HBT) derivatives have attracted
great attentions because of their excellent optical performances
[33–36]. Thus, HBT, as the initial skeleton, is expanded to form a
mega library of HBT derivatives by conjugation with different func-
tional groups and further used as fluorophores to design probe for
different species analysis. In particular for 2-(2-hydroxyphenyl)
benzothiazole, well-known for its ESIPT mechanism, were extended
for design of target probes. However, a limited number of probes
were developed based on 2-(4-hydroxyphenyl)benzothiazole. In
our lab, we have developed a series of fluorescent probes based on
this skeleton of HBT for different species analysis, such as metal
ions and anions [37–40]. Different recognition sites adopted for mer-
curic detection were summarized in mainly two manners. One is li-
gands containing hetero-atoms can coordinate with Hg2+, and the
other is Hg2+-induced reaction. However, coordination-based
probes generally suffered from interferences of other metal ions
with similar coordinate properties. Although Hg2+-induced reaction
for designing novel probe with high selectivity, most of current
reaction-based Hg2+ fluorescent probe was performed in mixed

http://crossmark.crossref.org/dialog/?doi=10.1016/j.saa.2020.118817&domain=pdf
https://doi.org/10.1016/j.saa.2020.118817
mailto:liangweizhang@yic.ac.cn
mailto:lxchen@yic.ac.cn
https://doi.org/10.1016/j.saa.2020.118817
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/saa


Fig. 1. Fluorescence changes of probe HBT-Hg (10 μM) towards various metal ions
(100 μM) in PBS buffer (10 mM, pH = 7.40) under 365 nm lamp. 0 and 17 represent
free probe HBT-Hg and Compound 1, respectively. 1–16 represent the probe in presence
of different metal ion including Na+, K+, Ca2+, Mg2+, Cu2+, Al3+, Cr3+, Fe3+, Cd2+, Ni2
+, Fe2+, Co2+, Mn2+, Zn2+, Ag+, Hg2+.
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solution containing a high proportion of organic solvent to ensure
the reaction proceeds at a certain speed. There remains a great chal-
lenge to design a novel fluorescent probe for Hg2+ detection.

Hence, consideration of above mentioned factors and combined our
previous work, we have selected HBT fluorophores as signal transduction
group to designed afluorescent probeHBT-Hg in a step fromcompound1
with a high yield of 83.9% (Scheme 1), and was fully characterized by 1H
NMR, 13C NMR and HRMS spectra (Fig. S1-S3). In the presence of Hg2+, a
reaction was triggered. The probe HBT-Hg converted to compound 1, ac-
companied with a ratiometric fluorescence change from blue to light
green. The responsemechanismwas further confirmed by HPLC analysis.
All the spectral studies demonstrate theprobeHBT-Hg canbeused for de-
tection of Hg2+ with high selectivity and sensitivity.

2. Experimental

2.1. General methods

All reagents, including 2-aminobenzenethiol, p-hydroxybenzaldehyde,
toluene, acetic acid, 1, 3-dimercaptopropane and hexamethylenetetra-
mine, were analytical grade and purchased from commercial supplies
without further purification. NMR spectra were performed on Bruker
500 MHz instruments (AVANCE IIITM 500). MS spectrum was obtained
on LTQ-Orbitrap-ETD high resolution mass spectrometer (Thermo
Scientific, Orbitrap Elite). Live cell imaging was carried out on Olympus
fluorescent microscope (Fluo View FV1000). UV–vis absorption and fluo-
rescence spectral studies were recorded on an Evolution 220 UV–Visible
(Thermo) and FluroMax-4 Spectrophotometer (HORIBA Scientific),
respectively.

2.2. Reaction mechanism studies

Reaction mechanism studies of the probe HBT-Hg with Hg2+ were
performed on an Agilent Technologies 1260 Infinity HPLC system. All
the prepared samples (HBT\\Hg, Compound 1, and their mixture)
were passed through a 0.22 μm filter before each sample (20 μL) was
loaded onto a reversed-phase column, Agilent ZORBAX SB-C18 (5 μm,
4.6 × 150 mm). The column was eluted using a mixture of methanol
and water (70:30). The flow rate was set at 0.6 mLmin−1. A UV/vis de-
tector was used to monitor the samples at the wavelength of 330 nm.
The probe HBT-Hg (10 μM) was incubated with Hg2+ (100 μM) for
5 min in PBS buffer.

2.3. Fluorescence imaging

We used the live A549 cells for fluorescence imaging. A549 live cells
(4× 105)were cultured in 15mmplates and allowed to growovernight.
The probe HBT-Hg (10 μM) was added to the plate and continued cul-
ture for 5 min, and further treatment with 100 μM Hg2+ for 2 min,
5 min, and 10 min. Then the cells were visualized and photographed
on fluorescent microscope without washing.
Scheme 1. Synthetic route of probe HB
2.4. Synthesis of probe HBT-Hg

Compound 1 was easily obtained in two steps involving ring-
forming condensation reaction and formylation reaction according to
our previous procedures [37–39].

The probeHBT-Hgwas synthesized according to reported literatures
with somemodification [27]. The compound 1 (1mmol, 255mg) and 1,
3-dimercaptopropane (1.1 mmol, 119mg) was added to the solution of
dichloromethane. Under stirring, the BF3·Et2O (50 μL) was further
added drop-wise to themixture in an ice-water bath, and then the reac-
tion was monitored by TLC until the reagents were basically consumed.
And then the mixture was removed under reduced pressure. The crude
product was purified by column chromatography with a yield of 83.9%,
eluting with ethyl acetate/petroleum ether (1:5). 1H NMR (500 MHz,
DMSO‑d6) δ 10.31 (s, 1H), 8.30 (s, 1H), 8.08 (d, J = 16.3 Hz, 1H), 7.95
(dd, J = 8.8, 1.6 Hz, 1H), 7.90 (d, J = 8.9 Hz, 1H), 7.78 (d, J = 8.7 Hz,
1H), 7.24 (d, J = 16.3 Hz, 1H), 7.20–7.05 (m, 2H), 1.81 (s, 6H). 13C
NMR (126 MHz, Acetone‑d6) δ 167.99, 157.18, 155.34, 135.70, 129.59,
129.51, 128.01, 127.32, 126.83, 125.97, 123.67, 122.77, 117.07, 44.10,
32.70, 26.20. HRMS (m/z): 346.0389.[M+1]+, calcd. for C17H15NOS3=
345.032.
T-Hg and its response mechanism.



Fig. 2. Spectral studies of probe HBT-Hg towards Hg2+ in PBS buffer (10 mM, pH = 7.40). (A) Absorption spectra of probe HBT-Hg (10 μM) upon addition of various amount of Hg2+

(0–24 μM). (B) Fluorescent spectra of probe HBT-Hg (10 μM) upon addition of various amount of Hg2+ (0–54 μM). (C) The time-dependent fluorescent response of probe HBT-Hg
(10 μM) towards Hg2+ (100 μM). (D) The time-dependent fluorescent response of probe HBT-Hg (10 μM) towards Hg2+ (10 μM). λex = 350 nm.
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3. Results and discussion

3.1. Fluorescence changes of probe HBT-Hg towards metal ions

With the probeHBT-Hg in hand,we firstly qualitatively investigated
the fluorescence response of the probe by addition of 10 equiv. of differ-
entmetal ions in PBS buffer (10mM, pH=7.40). As shown in Fig. 1, the
probe HBT-Hg shows strong blue fluorescence (Eppendorf tube
0) under lamp 365 nm. There is no significant fluorescence signals
change except two metal ions, Hg2+ and Ag+. However, Ag+ only in-
duced fluorescence quenching (Eppendorf tube 15) while the fluores-
cence change from blue to light green in presence of Hg2+ (Eppendorf
tube 16) in accordance with the fluorescence of compound 1
(Eppendorf tube 17), suggesting only Hg2+ can induce the reaction
that the probe HBT-Hg converted to compound 1.
Fig. 3. Selectivity experiment of probeHBT\\Hg. Fluorescence intensity changes of probe (10 μM
the probe in presence of different metal ions including Na+, K+, Ca2+, Mg2+, Cu2+, Al3+, Cr3+
3.2. Spectral studies of probe HBT-Hg towards Hg2+

Inspired by above initial results of fluorescent changes qualitatively
observed by naked eye, UV–vis absorption and fluorescent spectral
studies of the probe HBT-Hg response to Hg2+ were further carried
out for quantitative Hg2+ analysis. As shown in Fig. 2A, there is only
an absorption band center at 320 nm when the probe HBT-Hg in PBS
buffer. The absorbance was gradually decreased after addition of Hg2+

from 0 to 24 μM, and a new absorbance band center at 420 nm formed
with slight enhancement simultaneously, accompanied with an
isosbestic point at 385 nm.Meanwhile, the fluorescence titration exper-
iments were carried out and depicted in Fig. 2B. As the Hg2+was added
from 0 to 54 μM to the solution of probe HBT\\Hg, the fluorescence of
probe HBT-Hg at 430 nm was significantly quenched while a new
peak formed at 520 nm.
) upon addition of various ions (100 μM): 0 represents freeprobeHBT\\Hg. 1–16 represent
, Fe3+, Cd2+, Ni2+, Fe2+, Co2+, Mn2+, Zn2+, Ag+, Hg2+. λex = 350 nm.
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Subsequently, the time- and dose-depend fluorescent response of
probe HBT-Hg (10 μM) towards Hg2+ (10, 100 μM) was performed
and shown in Fig. 2C&2D. In order To clearly observe its ratiometric
character, the amplified image of the long-wavelength peak was
shown in Fig. S4. Significantly, brilliant fluorescent changes were ob-
served when the probe was treated with Hg2+ as increasing time. By
comparison, the probe HBT-Hg showed a fast response even if at 1
Fig. 4. Mechanism studies of probe HBT-Hg with Hg2+ by HPLC analysis. (a) The probe
HBT-Hg (10 μM), (b) The compound 1 (10 μM), (c) The probe HBT-Hg (10 μM) was
incubated with Hg2+ (100 μM) for 5 min in PBS buffer.
equiv. of Hg2+. Overall, these preliminary dose- and time-depend inves-
tigations of absorption and fluorescence studies indicated the probe
HBT-Hg could be used for rapid and sensitive monitoring Hg2+ in com-
plete aqueous solution.

3.3. Selectivity experiments

In order to quantitatively evaluate the selectivity of the probe HBT-
Hg towards Hg2+, we further carried out fluorescent spectral studies
of probe HBT-Hg with various metal ions, such as Na+, K+, Ca2+, Mg2
+, Cu2+, Al3+, Cr3+, Fe3+, Cd2+, Ni2+, Fe2+, Co2+, Mn2+, Zn2+, Ag+,
Hg2+. As shown in Fig. 3, the results is highly similar to that described
in Fig. 1, the emission peak at 430 nm was significantly quenched
while a new peak was formed at 520 nm only when probe HBT-Hg
was interacted with Hg2+. Obviously, Ag+ just induced a certain extent
fluorescence quenching at same peak centerwithout a newpeak forma-
tion. Furthermore, fluorescence titration experiments of the probe with
Ag+were carried out for comparison shown in Fig. S5.Meanwhile, there
is no appreciable response by addition of other metal ions. By compari-
son of fluorescence ratio changes of F515/F425, only Hg2+ caused a no-
ticeable fluorescent response reached as high as an approximate 34-
fold enhancement (Fig. 3B). All these results clearly indicated the
probe HBT-Hg with high selectivity for Hg2+ over other metal ion in
PBS buffer.

3.4. Studying reaction mechanism by HPLC analysis

Although the solid spectral studies indicated that the probeHBT-Hg
could react with Hg2+, we performed HPLC experiments to support the
reactionmechanismproceed as depicted in Scheme1. All the samples of
probeHBT\\Hg, compound 1, and their mixture (reaction for 5 min be-
fore load onto a reversed-phase column) were prepared in PBS buffer,
and then were recorded on HPLC instrument. In Fig. 4c, the retention
time of the mixture sample (The probe HBT-Hg interacted with Hg2+

for 5min)was consistent with that of compound 1 (Fig. 4b), suggesting
that the probe HBT-Hg converted to its precursor compound 1.

3.5. Fluorescence imaging

To verify practicability of the probe HBT\\Hg, we carried out fluo-
rescence imaging for visualization of Hg2+ in living A549 cells. The
blue fluorescence signals were collected (the channel from 410 nm to
510 nm) using 405 nm as excitation. As shown in Fig. 5b, after incuba-
tion withHBT-Hg for 5min, the A549 cells exhibit a bright blue fluores-
cence. The cells were further pretreated with Hg2+ for different time
(2 min, 5 min and 10 min). The fluorescence signal was obviously
quenched in Fig. 5c-e. The spectral studies firmly demonstrated that
the probe HBT-Hg could sense Hg2+ with ratiometric character. There-
fore, we also try to collect the green fluorescence signals (the channel
from 500 nm to 600 nm). Regrettably, we did not obtain the positive re-
sults which may relative with slight fluorescence enhancement at
515 nm. Even so, the current results of imaging suggested the probe
HBT-Hg had ability to monitor Hg2+ in living cells.

4. Conclusion

In summary, we have successfully developed a HBT-based fluores-
cent probe HBT-Hg by a simple synthesized step with a high yield for
ratiometric detection of Hg2+. The solid evidences confirmed that the
probeHBT-Hg could sensitively and selectively reactwith Hg2+ in com-
plete aqueous solution, and accompany with a change of red-shift in
wavelength. Furthermore, the reaction mechanism was determined by
HPLC analysis that the probe HBT-Hg converted to its precursor com-
pound 1. Finally, the probeHBT-Hgwas successfully applied inmonitor-
ing Hg2+ in living A549 cells. All results demonstrated the probe HBT-



Fig. 5. (A) Fluorescence imaging of Hg2+ in living cells usingHBT\\Hg. The A549 cells (a). The cell treatedwith probeHBT-Hg (10 μM) for 5min (b). The cells were further incubatedwith
Hg2+ (100 μM) for 2 min(c), 5 min (d) and 10 min (e). (B) Relative fluorescence intensity was quantified by imageJ.
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Hg is a useful tool for Hg2+ monitoring with potential application
prospects.
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