@JAGU PUBLICATIONS

Journal of Geophysical Research: Oceans

RESEARCH ARTICLE

10.1002/2015JC011340

Key Points:

« Impacts of three different wind field
sources on lake wave dynamics are
examined

« Modifications to wind input and
whitecapping formulations are
critical to deepwater wave dynamics

« Depth-induced wave breaking and
the choice of mesh type dominate
modeled shallow-water wave
dynamics

Correspondence to:
M. Xia,
mxia@umes.edu

Citation:

Mao, M. A,, J. van der Westhuysen,

M. Xia, D. J. Schwab, and A. Chawla
(2016), Modeling wind waves from
deep to shallow waters in Lake
Michigan using unstructured SWAN, J.
Geophys. Res. Oceans, 121, 3836-3865,
doi:10.1002/2015JC011340.

Received 28 SEP 2015

Accepted 4 MAY 2016

Accepted article online 9 MAY 2016
Published online 3 JUN 2016

© 2016. American Geophysical Union.
All Rights Reserved.

Modeling wind waves from deep to shallow waters in Lake
Michigan using unstructured SWAN

Miaohua Mao’, André J. van der Westhuysen2, Meng Xia', David J. Schwab3, and Arun Chawla4

"Department of Natural Sciences, University of Maryland Eastern Shore, Maryland, USA, 2IMSG at NOAA/NWS/NCEP/
Environmental Modeling Center, College Park, Maryland, USA, 3University of Michigan Water Center, Graham
Environmental Sustainability Institute, University of Michigan, Ann Arbor, Michigan, USA, “NOAA/NWS/NCEP/
Environmental Modeling Center, College Park, Maryland, USA

Abstract Accurate wind-wave simulations are vital for evaluating the impact of waves on coastal dynam-
ics, especially when wave observations are sparse. It has been demonstrated that structured-grid models
have the ability to capture the wave dynamics of large-scale offshore domains, and the recent emergence
of unstructured meshes provides an opportunity to better simulate shallow-water waves by resolving the
complex geometry along islands and coastlines. For this study, wind waves in Lake Michigan were simulated
using the unstructured-grid version of Simulating Waves Nearshore (un-SWAN) model with various types of
wind forcing, and the model was calibrated using in situ wave observations. Sensitivity experiments were
conducted to investigate the key factors that impact wave growth and dissipation processes. In particular,
we considered (1) three wind field sources, (2) three formulations for wind input and whitecapping, (3) alter-
native formulations and coefficients for depth-induced breaking, and (4) various mesh types. We find that
un-SWAN driven by Global Environmental Multiscale (GEM) wind data reproduces significant wave heights
reasonably well using previously proposed formulations for wind input, recalibrated whitecapping parame-
ters, and alternative formulations for depth-induced breaking. The results indicate that using GEM wind field
data as input captures large waves in the midlake most accurately, while using the Natural Neighbor
Method wind field reproduces shallow-water waves more accurately. Wind input affects the simulated wave
evolution across the whole lake, whereas whitecapping primarily affects wave dynamics in deep water. In
shallow water, the process of depth-induced breaking is dominant and highly dependent upon breaker
indices and mesh types.

1. Introduction

Lake Michigan (Figure 1a), the third largest lake in the Great Lakes system by surface area (58,000 km?) and
second largest by volume (4900 km?), has experienced severe windstorms over the past 20 years [Jensen
et al,, 2012]. These extreme events present coastal hazards such as high waves and rip currents at recrea-
tional beaches, especially along the lake’s southeastern coast. Furthermore, a number of lake processes
driven by extreme winds and waves, such as sediment resuspension and plume dynamics, can also be sig-
nificantly affected by these storms, which can impact the regional ecosystem, as occurred with the 1998
and 1999 spring blooms. Although wave observations are routinely recorded by the National Oceanic and
Atmospheric Administration’s National Data Buoy Center (NOAA-NDBC), gaps in data for the midlake (deep-
water) and some coastal (shallow-water) stations still exist under severe storm conditions. Therefore, accu-
rate wind-wave simulation is fundamental to the understanding of complex coastal dynamics in Lake
Michigan [Lou et al., 2000; Schwab et al., 2000; Chen et al., 2004; Jensen et al., 2012].

Given the limitations, especially in shallow water, in available wave buoy data, a third-generation wind-wave
model known as Simulating Waves Nearshore (SWAN) [Booij et al., 1999] has been widely used for both hind-
casting surface gravity waves [Rogers et al., 2003] and forecasting future conditions [Rogers et al., 2007]. Using
the spectral action balance equation for wave energy [Gelci and Cazalé, 1953], SWAN simulates the growth,
propagation, and decay of waves, taking into account current-induced and depth-induced refraction and fre-
quency shifts, wind input, whitecapping dissipation, bottom friction, depth-induced wave breaking, and non-
linear wave-wave interactions [Booij et al, 1999]. Whitecapping is widely regarded to be the principle
mechanism for wave dissipation in deep water, and therefore many semiempirical formulations for this
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Figure 1. Maps of (a) the Great Lakes system and (b) Lake Michigan. Note that the red solid line in Figure 1a marks the Canada-U.S.

border.

process have been developed
and calibrated [e.g., Rogers
et al.,, 2003, 2012; van der West-
huysen et al., 2007]. Rogers et al.
[2003] calibrated the free
parameters for the wave
steepness-related whitecap-
ping formulation of Komen
et al. [1984]. Specifically, Rogers
et al. [2003] increased the
weighting of the relative wave
number to shift the dissipation
toward higher frequencies and
made simultaneous adjustment
to the dissipation rate to match
the limiting spectrum of Pierson
and Moskowitz [1964]. This
modification greatly reduced
the error in the estimation of

wave frequency at midlake stations (NDBC 45002 and 45007, see Figure 2a). However, the interpolated spa-
tial wind field used as input for the model was based only on midlake stations, which may bias the estima-
tion of complex wind conditions near coasts [Jensen et al., 2012; Alves et al., 2014].

Figure 2. Bathymetry and computational meshes for Lake Michigan: (a) bathyme-
try and NDBC buoy stations, (b) orthogonal curvilinear grid, (c) unstructured trian-

gular mesh with medium resolution, and (d) with high resolution. The black lines
represent the coast and island outlines.

In order to quantify simulation error
resulting from inaccuracy in the wind
field data, Jensen et al. [2012] hind-
casted seven Lake Michigan storms
from 1989 to 2009 using the Wave
Model (WAM) Cycle 4 with two sour-
ces of wind field data. These data
were derived from the NOAA National
Centers for Environmental Prediction’s
(NOAA-NCEP) Climate Forecast Sys-
tem Reanalysis (CFSR) wind field, and
from the Great Lakes Environmental
Research Laboratory’s (GLERL) ob-
servation-based Natural Neighbor
Method (NNM) wind field. Jensen et al.
[2012] compared their simulation
results with observations from buoys
in the midlake and one station near
the western shore (station 45010,
where water depth is 19.6 m, see Fig-
ure 2a). They reported that the spatial
structures of the wind and wave fields
were similar, but the model driven by
the spatially coherent CFSR wind data
outperformed the model using the
NNM wind data for the estimation of
storm waves (defined as the mean
value of significant wave height
(SWH) plus two times the variance) at
midlake. Alves et al. [2014] confirmed,
based on distinct responses to alter-
native wind fields (e.g.,, NCEP’s North
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American Mesoscale Model (NAM), and the National Digital Forecast Database) using WAVEWATCH |lI
(WW3) [Tolman, 2002], that model accuracy is strongly dependent upon the selection of wind field sources,
and that model performance can be further improved by applying more advanced parameterization for
deepwater wave physics (i.e., wind input and whitecapping terms). However, they used a 2.5 km resolution
curvilinear structured grid over the entire Great Lakes system without specific focus on shallow-water
regions where the complex and steep bathymetry would likely be better resolved with flexible unstructured
meshes [Zijlema, 2010]. Although a 200 m resolution structured-grid shallow-water model (Steady-state
spectral WAVE, known as STWAVE) [see Massey et al., 2011] for the southwestern shore of Lake Michigan
and Green Bay was applied by Jensen et al. [2012], its assumption of stationarity may limit its accuracy.
Moreover, the one-way nesting process from unstructured mesh to structured grid [Jensen et al., 2012] may
introduce both physical and numerical errors [Zijlema, 2010]. Because of the difficulty of adjusting mesh
size and orientation to accommodate highly irregular coasts and island shorelines, models that use unstruc-
tured meshes typically outperform those that use structured grids in computational accuracy and efficiency
[Zijlema, 2010].

For their Gulf of Mexico study domain, Kerr et al. [2013] concluded that wave statistics were insensitive to
grid resolution (i.e., a moderate-resolution mesh versus a high-resolution mesh) in deepwater (water depths
greater than 3000 m) and shelf regions (water depths between 50 and 200 m) but were sensitive to grid
resolution at coastal stations. Aside from the effect of grid resolution, shallow-water wave dynamics assess-
ment is also significantly affected by the description of depth-induced breaking. Van der Westhuysen [2010]
applied various models of wave breaking [Battjes and Janssen, 1978, hereafter BJ78; Thornton and Guza,
1983, hereafter TG83] to three shallow lakes in Netherlands with typical water depths of less than 5 m, and
improved the models’ accuracy by optimizing the breaker index. Even though Lake Michigan is a relatively
deep lake, with an average water depth of about 85 m, appropriate parameterization of depth-induced
breaking is nonetheless expected to improve the accuracy of wave simulations for its shallow-water regions
[van der Westhuysen, 2010; Salmon et al., 2015]. In addition, the variation in monthly lake levels in the Great
Lakes system reported by Sellinger et al. [2007] and Gronewold and Stow [2014] may be an important factor
for depth-induced breaking. This possibility has not previously been explored. Finally, Rogers et al. [2007]
demonstrated that shallow-water wave processes such as depth-induced refraction can introduce error if
complex bathymetry is poorly resolved. Dietrich et al. [2013] further developed a range of Courant-
Friedriches-Lewy (CFL) limiters for the directional turning rate of the spectral propagation velocities of
waves, and succeeded in stabilizing wave simulation for Hurricane Hugo (1989) off the coast of South Caro-
lina. To avoid excessive restriction to wave propagation, Dietrich et al. [2013] suggested using a CFL value
that is as large as possible, but within the range of 0.25-0.5. Therefore, a CFL value of 0.5 is adopted for the
simulation herein.

For this study, we configured an unstructured-grid version of SWAN (un-SWAN) [Zijlema, 2010] for Lake
Michigan over the ice-free period (April-November) for the years 2002-2012 and verified the model’s skill
with a hindcast of Superstorm Sandy (2012). This study addresses three main questions: (1) How well can
un-SWAN simulate surface gravity waves, particularly for extreme wind events? (2) How do the SWH and
energy dissipation fields (i.e., whitecapping and depth-induced breaking) respond to wind input during
Superstorm Sandy (2012)? (3) How does model performance differ when alternative sources of wind field
data, different descriptions of deepwater and shallow-water wave physics, and various mesh types are
applied?

This study is organized as follows: the methodology is introduced in section 2, which includes description
of the study domain, mesh types, models, data sets, skill metrics, and wind and wave climates of Lake Michi-
gan. Section 3 presents wave simulation results for the default and recalibrated models. Model sensitivity
experiments addressing the aforementioned question (3) are reported, and differences are explained in sec-
tion 4. Discussion and conclusions are given in sections 5 and 6, respectively.

2. Methodology

2.1. Study Domain and Mesh Types
From north to south, the major body of Lake Michigan comprises the Chippewa Basin, the Mid-Lake Plateau,
and the South Chippewa Basin (Figure 1b). Its two largest bays (Green Bay and Grand Traverse Bay) and two
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Table 1. Model Meshes and Geometric Information for Lake Michigan
Model Mesh Type

Orthogonal Medium-Resolution High-Resolution
Model Information Curvilinear (OC) SWAN (MR) un-SWAN (HR) un-SWAN
Elements/cells 52,975 9581 38,324
Nodes 52,975 (163 X 325) 5256 20,108
Grid resolution (water depth <20 m) 1.8 X 1.8 km 0.34-4.4 km 0.21-2.2 km
Grid resolution (20 m < water depth <50 m) 0.34-7.1 km 0.22-3.6 km
Grid resolution (water depth > 50 m) 0.44-7.6 km 0.22-3.8 km
Average water depth 85m
Lake width 259 km
Lake length 493 km

major islands (Beaver Island and North Manitou Island) are located in the northern part of the lake. Ambient
flows into the lake (e.g., from the Grand River, Ml, and the channel that connects Lakes Michigan and Huron)
are not considered for this study; it is assumed that their effects on the lake’s wave dynamics are insignifi-
cant. Various computational mesh types, including orthogonal curvilinear (OC) structured grids, and
medium-resolution and high-resolution (MR and HR) unstructured meshes are applied (Figures 2b-2d). The
OC grid cells are evenly distributed (1.8 X 1.8 km resolution) over the entire computational domain with a
total number of 52,975 cells (163 X 325). The spatial structure of the OC grid is similar to that applied by
Alves et al. [2014] but is somewhat higher in horizontal resolution. The MR unstructured mesh consists of
5256 nodes and 9581 elements. The HR version has a similar mesh structure, but contains 20,108 nodes and
38,324 elements. The mesh size of the MR version benefits from a capacity for local mesh refinement; it
decreases to 340 m in the shallow-water region (water depth below 50 m), whereas it increases to 440-
7600 m over the major body of the lake (water depth over 50 m). The lake bathymetry is resolved more
finely by the HR version, of which the mesh size is about half of that for the MR version. Details about the
domain size and mesh distribution over the lake are given in Table 1.

2.2. Model Description
The un-SWAN model is based on the spectral action balance equation for wave energy [Gelci and Cazale,
1953; Booij et al., 1999; Zijlema, 2010; SWAN Group, 2012a, 2012b]:

ON | 0CgxN  9CqyN  0CeN  0CoN _ Stor

—+ + + +
ot ox dy do 900 o M

where ¢ is the intrinsic frequency, 0 is the wave direction taken counterclockwise from the geographical
east, N denotes the wave action spectral density, t is time, and C, is the wave group velocity in space
(x, y, o, and 0).From the right side of equation (1), S is expressed as follows:

Stot = Sin 1 Sni3 +Snia T Sds w T Sds.b + Sds br. )
These six terms for wave energy sources and sinks represent wave growth by wind input, nonlinear wave

energy transfer through three-wave and four-wave interactions, wave decay due to whitecapping and bot-
tom friction, and depth-induced wave breaking, respectively.

The wind input term in the wave model consists of two parts:

Sin(o,0)=A+BE (a,0), (3)
where term A represents the initial linear growth stage of wind waves. The following exponential growth
term BE (o, 0) is one or more orders of magnitude larger than the linear term because of the positive feed-

back of wave energy. The default formulation for the exponential wind-wave growth process is based on

the work of Snyder et al. [1981], and given by Komen et al. [1984] as follows:
_ Pa Us _ _
B=max {O, 0.25-9 (28—cos(0 Ow) 1) }a. 4)
Pw Cph

An alternative formulation by Janssen [1991] adopts the quasi-linear wind-wave theory:
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2
B=ﬁ& (£> max|[0, cos (0—0,)]° o. (5)
Pw \Cph

Yan [1987] proposed an empirical fit equation based on experimental data sets:

2
B=D(&) cos(9—0w)+E(£> cos(0—0,)+F cos(0—0,)+H, (6)
Cph Cph

in which p, and p,, refer to the density of air and water respectively; U. and ¢,y are the wind friction veloc-
ity and wave phase speed, respectively, 0 and 0,, are the mean wave and mean wind direction, respectively,
and f is the Miles constant. The coefficients defined by Yan [1987] were refitted by van der Westhuysen
et al. [2007] such that D=4.0X10"2, E=5.52X1073, F=5.2X10"°, and H=—3.02X10"*. The key vari-
able U, is calculated from the wind speed at 10 m elevation (U,o), and the wind drag coefficient C4 by the
following formulation by Wu [1982]:

U2=CyX U3, (7)

1.2875 U< 7.5 m/s
. 8)

Cyx10°=
(0.8+0.065XU10) Uy >75 m/s

Powell et al. [2003] suggested that the wind drag coefficient Cy4 should be capped when U, is greater than
about 33 m/s. We adopt the recommendation of the SWAN manual [SWAN Group, 2012a, 2012b] by setting
an upper limit of C4=2.5X1073 for a maximum of U;p=26 m/s.

The whitecapping dissipation term in equation (2) is based on the pulse-driven model of Hasselmann
[1974], as modified by Komen et al. [1984] and Janssen [1992]:

5ds,w(07 Q):l"am (ki) E(G, (‘)) (9)

The steepness parameter I is defined as

()"

where 6, and k;,, are the mean wave frequency and mean wave number, respectively, k is the wave num-
ber, and Cy4 and ¢ are tunable parameters that represent the whitecapping dissipation rate and weighting
coefficient of the relative wave number, respectively. The superscript m denotes the power of the ratio of
the overall wave steepness s to that of Pierson and Moskowitz [1964]'s spectrum spy=v/3.02X1073.

The default depth-induced breaking formulation is derived from the BJ78 model, which assumes that the
maximum possible wave height Hp. for a given local water depth d is limited by a breaker index yg),
expressed as Hmax=7g,X d. The alternative TG83 model introduces a weighting function with a scaling
coefficient MTG:(H,mS/yTGd)Z, where yrs=Hmsmax/d is the ratio of the maximum possible root-mean-
square of wave height to local water depth. The default breaker indices for the BJ78 and TG83 models are
18;=0.73 and y;5=0.42, respectively.

On the basis of the governing equation (1), the un-SWAN model is discretized with a first-order, backward-
space, backward-time scheme, and a hybrid central or upwind scheme in wave spectral space. This implicit
geographical propagation scheme avoids the strict CFL limitation on time step, but a CFL limiter of 0.5 in
the directional space of waves is nonetheless used to prevent excessive depth-induced refraction in regions
with under-resolved bathymetry. The equation is integrated using a finite difference method. In this study,
the wave directions are evenly distributed into 36 bins with a constant bandwidth of 10°, and frequencies
are discretized over 32 bins with an increasing logarithmic scale over the range of 0.0512-1 Hz. The compu-
tational time interval is set to 5 min. For detailed descriptions of discretization skill and the numerical
scheme, readers are referred to Booij et al. [1999] and Zijlema [2010].

2.3. Model Input and Observational Data
The wave model was applied using three different sources of wind field data adjusted to 10 m elevation: (a)
the GLERL's NNM-based [Schwab and Morton, 1984] hourly, 2 km horizontal resolution forcing, derived from
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Table 2. Locations and Water Depths for the NDBC Buoys of Lake Michigan

Station Data Source Data Availability Years Longitude (°) Latitude (°) Water Depth (m)
1 45002 NDBC 2002-2012 —86.411 45344 1753
2 45014 Univ. W-M 2012 —87.760 44.800 13
3 0Y2w3 UsCG 2012 —87.313 44.794 54
4 C58W3 USCG 2012 —87.563 44146 59
5 45013 Univ. W-M 2012 —87.850 43.100 20
6 45018/FSTI2 Chicago Park District 2011-2012 —87.637 41.968 39
7 45016 Chicago Park District 2011-2012 —87.573 41.783 48
8 45015 Chicago Park District 2011-2012 —87.527 41.714 35
9 45026 Limno Tech 2011-2012 —86.617 41.983 20.7
10 45007 NDBC 2002-2012 —87.026 42674 160
11 45029 Limno Tech 2012 —86.272 42.900 27
12 45161 GLERL 2012 —86.361 43.178 25
13 45024 UM CILER 2012 —86.559 43.977 303
14 45022 MTU 2011-2012 —85.088 45.403 49.1

lake buoy-based (at midlake and several nearshore stations) and coastal land site-based data [Lang and
Leshkevich, 2014]; (b) the Canadian Meteorological Centre’s three-hourly, 10 km resolution wind field from
the Global Environmental Multiscale (GEM) Model, which assimilates both in situ and remotely sensed data
[Coteé et al., 1998]; and (c) the reanalysis data set from the NOAA-NCEP Climate Forecast System Version 2
(CFSv2) with hourly, 0.205° (longitudinal) and ~0.204° (latitudinal) resolution, which assimilates surface,
upper balloon, aircraft, and satellite observations [Saha et al., 2014]. Gridded bathymetry data obtained
from the NOAA National Geophysical Data Center (NGDC), with a resolution of 6 arc sec (approximately
185 m in longitude and 133 m in latitude), are interpolated to computational cells. The lake bathymetry is
steep near the shallow coast, islands, and bays (e.g., Green Bay), and mild in the Chippewa Basin and the
South Chippewa Basin (Figures 1b and 2a). Monthly lake level anomaly values are derived from the NOAA's
Great Lakes Water Level Dashboard (GLWLD) surface water elevation records. The NOAA-NDBC provides
access to observational wind and wave buoy data from all over the lake that are managed by various
national and regional organizations (Figure 2a and Table 2).

2.4, skill Metrics

Taylor diagrams [Taylor, 2001] were used to evaluate model skill based on the correlation coefficient (CC),
normalized standard deviation (NSTD), and root-mean-square deviation (RMSD). In addition, the scatter
index (SI) and relative bias (RB) were also included in the scatterplots for model-to-data comparisons. These
expressions are given as follows:

%ZL (f,,—f)(r,,—?) )

of0y

cc=

1N 7\2
1SN (f,—F
NSTD= NZn71 (” ) ’ (12)

N —\2
%Zn:1 (r,,fr)

1 N 1/2
RMSD= {NZM (f,,_rn)z] : (13)
1 N 2
N = rn_fn
5/:%, (14)
NZn:1 fa
N p—
RB:W7 (15)
Zn=1 fn

where f and 7 are the mean values of the data sets f, and r,, respectively, in a sample of size N, and o7 and
o, are the corresponding standard deviations. In this study, f, denotes the observed wind speed, SWH, or
peak wave period (PWP) at time n, and r,, is the corresponding value from model input or output.
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Figure 3. a. Rose diagrams for (left column) wind and (right column) SWH directions for the northern midlake (45002), southern midlake
(45007), and near mideastern (45029) and southeastern (45026) coasts, from the top to the bottom. b. Rose diagrams for wind directions
at locations near the (left) southwestern (FSTI2), midwestern (45013), northwestern (0Y2W3), and (right) northeastern coasts (45024), and
in Little Traverse Bay (45022) and Green Bay (45014).

MAO ET AL. WAVE LAKE MICHIGAN 3842



@AGU Journal of Geophysical Research: Oceans 10.1002/2015JC011340

Figure 3. (continued)

2.5. Wind and Wave Climates of Lake Michigan

The hourly data for wind speed and SWH at midlake stations were averaged to monthly values for the ice-
free period of the years 2002-2012. The spatial variability of wind and wave climates was further investi-
gated with the addition of recently deployed coastal buoy stations in 2011 and 2012.

Figure 3a presents the rose diagrams for hourly wind speeds and SWHs at buoys located in the northern
midlake area (45002), southern midlake area (45007), and near the mideastern (45029) and southeastern
shores (45026). Figure 3b shows additional wind roses for hourly wind speed along the southwestern
(FSTI2), midwestern (45013), northwestern (0Y2W3), and northeastern shores (45024), and in Little Traverse
Bay (45022) and Green Bay (45014). These data indicate that wind directions at midlake stations follow
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Figure 4. Monthly averaged (a) SWH and (b) wind speed of NDBC in situ buoys in the northern (45002) and southern midlake areas (45007), in Green Bay (45014) and Little Traverse Bay
(45022), and near the western (45013 and 0Y2W3) and eastern coasts (45024, 45026, 45029, and 45161).

primarily along the lake’s longitudinal axis. However, at the shallow eastern coastal stations 45026 and
45029, multidirectional coastal winds show clear dominance of an onshore component from the lake’s inte-
rior. Steered by these westerly and northwesterly local winds, the shallow-water waves propagate toward
the eastern coast of the lake. In contrast, winds at northeastern/northwestern and midwestern coastal sta-
tions show signatures of alongshore and offshore directions, respectively (Figure 3b). Near the extremely
shallow southwestern coast, wind conditions are complex, and no single prevailing wind direction is
observed. It should be noted that the winds over Little Traverse Bay and Green Bay are predominately paral-
lel to the major axes of the respective bays. The intensity of wind over the lake is most often mild (5-10 m/
s), followed in frequency by weak (0-5 m/s), high (10-15 m/s), and strong values (15-20 m/s). Across all sta-
tions, small (0 < SWH <2 m) and medium (2 m < SWH <4 m) waves account for a large proportion of the
observed SWH, although large (4 m < SWH <6 m) and moderately high waves (SWH > 6 m) are present at
midlake stations. These fully developed extreme wave conditions are likely induced by the strong winds
with long fetch distances (400-500 km) that follow along the lake’s longitudinal axis.

Figure 4 shows histograms of monthly averaged SWH and wind speed at various deepwater (northern and
southern midlake), intermediate-water (Little Traverse Bay), and shallow-water stations (Green Bay, and the
western and eastern coasts). An interesting phenomenon is that the monthly averaged SWHs in the lake are
larger in the late fall (i.e., October and November), while the monthly averaged wind speeds during these 2
months have similar speeds to those of the late spring (i.e., April and May). Because SWH is highly sensitive
to the intensity of wind speed (i.e, it is proportional to the square of wind speed) [see Benetazzo et al.,
2013], the monthly averaged SWH value may be enhanced significantly by several extreme wind events.
However, these event-dominated gusts generally last only a few hours, which may limit their contribution
to the monthly averaged wind speed. Therefore, this phenomenon may be explained by the observation
that extreme wave conditions occurred more frequently in the late fall than in the spring in the midlake
area in the years 2002-2012 (i.e,, a total of 11 events in the late fall and 6 in the spring, see Tables 3—4 and
3—5in Jensen et al. [2012]). Spatially, the monthly averaged SWHs of the deepwater regions are higher than
those in the intermediate-water and shallow-water regions. This difference emerges because the elongated
wind fetch over the spacious midlake region can generate fully developed deepwater waves, while the
coastal winds are significantly impeded by the irregular coastline, and the waves are affected by strong
depth-induced breaking in the shallow-water regions. It is noted that the monthly averaged SWHs near the
eastern coast are larger than those near the western coast, presumably because of the long-term averaged
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Table 3. MR un-SWAN Model Cases With Different Wind Field Sources, Settings for Wind Input and Whitecapping Dissipation, and Depth-Induced Breaking Terms

Case Wind Field Source Wind Input Whitecapping Dissipation Depth-Induced Breaking Formulation Spatial Lake Level

Case 1a (default) NNM Snyder et al. [1981] Komen et al. [1984] Battjes and Janssen [1978] Constant
Css=236X10"° 6=0 75,=0.73

Case 1b GEM Janssen [1991] Readjusted Rogers et al. [2003] Battjes and Janssen [1978] Constant
Cys=3.0X107° 6=0.3 7=0.73

Case 1c GEM Refitted Yan [1987] Van der Westhuysen et al. [2007] Battjes and Janssen [1978] Constant
Cys=5.0X10"° B,=1.75X1073 7gy=0.73

Case 2a GEM Janssen [1991] Readjusted Rogers et al. [2003] Battjes and Janssen [1978] Monthly variable
Cys=3.0X107° 6=0.3 7=0.73

Case 2b GEM Janssen [1991] Readjusted Rogers et al. [2003] Battjes and Janssen [1978] Monthly variable
Css=3.0x10"° =03 75,=0.3

Case 2c (recalibrated) GEM Janssen [1991] Readjusted Rogers et al. [2003] Thornton and Guza [1983] Monthly variable
Cys=3.0X107° 6=0.3 976=0.42

westerly wind conditions over Lake Michigan that enhance the fetch toward the eastern coast [Beletsky and
Schwab, 2008].

3. Wave Simulations

3.1. Long-Term Wave Simulation With the Default Model

We first consider a long-term Lake Michigan wave simulation from April to November in the years 2002-
2012 using the MR un-SWAN model with the default physics settings of version 40.91 [SWAN Group, 2012a,
2012b]. The default model is driven by the GLERL's observation-based NNM winds, as applied operationally
by NOAA in the Great Lakes Operational Forecast System (GLOFS). The wind input and whitecapping terms
are based on the work of Snyder et al. [1981] and Komen et al. [1984], with the default dissipation rate of
Cys=2.36X10"> and the relative wave number weighting coefficient of =0. The formulation of Hassel-
mann et al. [1973], with a constant coefficient of 0.067 m? s>, is applied for bottom friction dissipation.
Depth-induced breaking is incorporated through the BJ78 model, with a default breaker index of y5,=0.73.
In addition, the directional wave speed is limited, with a CFL number of 0.5 to restrain spurious refractions
over regions where the bathymetry is under-resolved [Dietrich et al., 2013]. Details of the physical parame-
terization of the default model (Case 1a) can be found in Table 3.

Model-to-data comparisons for wind speed and SWH are shown in Figures 5a and 5b, respectively. On aver-
age, slight underestimations (negative RB) of the wind speeds in NNM data are noted across all stations
except for a very shallow northwestern shore station (0Y2W3). With this wind forcing, SWHs produced with
the un-SWAN model are underestimated for most stations, although they are overestimated in Green Bay
(45014), and along the midwestern (45013) and southwestern shores (45018, 45016, and 45015). Because
wind forcing is the primary driving agent of the wave dynamics of an enclosed lake, underestimation of
wave height can be partially attributed to the underprediction of wind speed. However, the degrees of
underprediction for wave heights at stations 45002 and 45007 (—4.4% and —6.2%) are significantly larger
than for wind speed (—0.3% and —1.4%), which suggests that the deviation may originate from deficiencies
in the treatment of deepwater wave physics (i.e., the parameterization of whitecapping dissipation) [see
Rogers et al., 2003].

Overall, the scores for the RB, SI, and CC for wind speeds and SWHs for the midlake area are superior to
those for the extreme shallow-water stations in Green Bay and along the northwestern and southwestern
coasts, where the interactions of waves with bathymetry are highly dynamic. Consequently, the largest
NSTD of SWH is found at the shallowest southwestern shore station (NSTD = 1.68). The large SI and RMSD
scores for SWH from the station in Green Bay (SI = 1.026 and RMSD = 0.39 m) are largely attributable to sig-
nificant underestimation of outliers in wave height (3 m < SWH <5 m) at that location. The third trend
apparent in the model results is that the SWHs along the western shores (45013, 45015, 45016, and 45018)
and in Green Bay are overestimated (i.e., positive RB) despite slight underestimation of wind speed (i.e., neg-
ative RB). This negative correlation is likely because of inaccurate estimation of shallow-water wave proc-
esses in the default model, such as the omission of monthly lake level variations, and deficiencies in the
description of depth-induced refraction and breaking.
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Table 4. Computational Speed of Wave Models With Different Mesh Types for Lake Michigan Wave Simulations of the Year 2011

Model Type HPCC System Core Number Computational Time (min/d)
OC SWAN TACC/UT Stampede 16 6
MR un-SWAN 16 3
HR un-SWAN 16 15
MR un-SWAN with WCI CISL Yellowstone 96 25

To improve these results, additional experiments using un-SWAN with alternative wind field sources and dif-
ferent formulations and parameterizations for deepwater and shallow-water wave physics are discussed
below.

Figure 5. a Scatterplots of wind speeds determined by the NNM (U;o num) Versus observed values (Uyg 0p5) at various NDBC buoys. Note that because no wind data are available from
NDBC stations 45015, 45016, and 45018, the observed winds from the adjacent FSTI2 station are used. b. Scatterplots of SWH (H;g,ywm) values from the un-SWAN model with NNM winds
versus observed values (Hsig,0p5) taken at various NDBC buoys.
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Figure 6. a. Scatterplots of SWHs from the un-SWAN model with the default (H;4,4¢) and recalibrated settings (Hsg,r.c) versus SWH observational data (Hsg,ops) taken at various NDBC
buoys in 2012. b. Same as Figure 6a except for that SWH (Hy;,) is replaced by PWP (Tpeq).

3.2. Improved Performance With the Recalibrated Model

In this section, we examine the skill of a recalibrated MR un-SWAN model for which the input sources and
wave physics have been optimized, as will be discussed in the following sections (see model input and set-
tings of Case 2c in Table 3). Figures 6a and 6b show scatterplots of simulated SWHs and PWPs from Cases
1a (the default version) and 2c (the recalibrated MR un-SWAN model) versus observations over April-
November 2012 at 13 NDBC stations. Large waves are identified at the eastern shore buoys (45029 and
45026) and northern midlake buoy (45002), and moderately high waves are identified at the southern mid-
lake buoy (45007) caused by enhanced wind intensity and fetch distance under storm conditions (e.g., the
dominant northerly winds of Superstorm Sandy, 2012). Overall, both model configurations demonstrate rea-
sonable skill in reproducing wave heights across all stations except for some large outliers in Green Bay
(45014) and along the northwestern shore (0Y2W3 and C58W3). The recalibrated un-SWAN model slightly
overestimates SWHs at buoys in the midlake area (45002 and 45007), and along the southwestern (45018
and 45016), midwestern (45013) and north-of-mid-eastern shores (45161), whereas it underestimates SWHs
in Little Traverse Bay (45022), Green Bay (45014), and near the southeastern (45026), south-of-mid-eastern
(45029), northeastern (45024), and northwestern shores (0Y2W3 and C58W3). Compared with the default
model, the recalibrated model improves not only the simulation of extreme wave height at buoys in mid-
lake but also the overall statistical accuracy (RB and Sl) for SWH along the shallow eastern (45026, 45029,
and 45024) and southwestern shores, and in Little Traverse Bay. Additionally, the RB and SI scores for PWP
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Figure 6. (continued)

are significantly reduced in the recalibrated model at all NDBC buoy stations except for Green Bay (Figure
6b). It should be noted that a large portion of low-frequency (i.e., higher PWP) waves are underpredicted at
buoy stations 45024 and 45022. This possibly because the wind sea estimated in the model causes unphysi-
cal swell dissipation that was not observed in the buoy data [Rogers et al., 2003], which is beyond the scope
of this study.

Taylor diagrams (Figure 7) confirm quantitatively that both models perform well statistically (RMSD, NSTD,
and CC) for wave simulations across all stations, except for SWH in Green Bay (45014) and near the north-
western coast, and for PWP near the southwestern coast. The recalibrated version yields superior scores for
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the NSTD of both SWH and PWP for
most buoy stations compared to
scores from the default model. In the
next section, the verification of the
recalibrated un-SWAN model is exam-
ined by hindcasting the dynamic
responses of the spatiotemporal wave
field to Superstorm Sandy (2012).

3.3. Hindcasting Case: Superstorm
Sandy (2012)
The wind speeds and directions from
the GEM and NNM fields, along
with their resulting SWHs and PWPs
from the un-SWAN model, are com-
pared with observed results of the
Superstorm Sandy event from Octo-
ber 29 to November 1, 2012 (Figure
8). Both GEM and NNM winds agree
well with observational wind data
across all stations, but the NNM wind
field shows superior performance at
the shallow-water station 45013. Con-
sequently, the un-SWAN model using
the NNM winds expresses superior
skill in reproducing SWH at the
shallow-water station, whereas the
model driven by the GEM model
winds reproduces midlake extreme
waves more accurately. In particular,
the northerly wind-induced extreme
SWH at the southern midlake buoy
45007 is captured nearly perfectly by
the model that uses the GEM winds,
possibly because it better estimates
the wind field along the lake’s longitu-
dinal axis between the midlake buoys.
It should be noted, however, that the
Figure 7. Taylor diagrams summarizing the CC, NSTD, and RMSD values for un- SWH at the shallow-water station
SWAN model estimations with default (green) and recalibrated settings (red) 45013 is consistently overestimated.
compared with NDBC in situ observations for (a) SWH and (b) PWP. Additional numerical experiments
(not described here) indicate that the
SWH variations that result from using different formulations for depth-induced breaking [BJ78; Nelson, 1987;
Ruessink et al., 2003] and bottom friction dissipation [Collins, 1972; Madsen et al., 1988], and from coupling
with the Advanced Circulation Model (ADCIRC) [see Dietrich et al., 2011] are not as significant as those that
result from using alternative wind fields (e.g., the GEM and NNM winds). Van der Westhuysen [2010] demon-
strated that wind direction plays a key role in determining shallow-water wave growth (e.g., sloping bed
surf zone or finite water depth conditions), and therefore further impacts the intensity of depth-induced
breaking. Alves et al. [2014] reported that a wave model with improved physical parameterization designed
to address short-fetch (offshore winds) wave growth could potentially provide more accurate storm wave
simulation for the Great Lakes. Another possible explanation for remaining overprediction of SWH is insuffi-
cient treatment of the airflow separation effect, which could reduce wave growth intensity via wind input
[Donelan et al., 2006]. Relative to the consistent SWH overestimation at the western shore station 45013, the
intermittent underestimations at the northwestern shore stations 0Y2W3 and C58W3 were probably caused
by the lack of consideration for wind gustiness [Cavaleri, 2009], which could significantly enhance wind
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Figure 8. Time series of (a) wind speed and (b) wind direction taken from the GEM and NNM fields, and (c) SWH, (d) PWP, and (€) MWD determined through the un-SWAN models driven
by these two fields compared with observations taken at various NDBC buoys during Superstorm Sandy (2012). Note: Cartesian conventions are adopted here for wind direction.

intensity on a short time scale [Powell et al., 2003]. The gusts, which typically reach peak speed for only 5 or
8 s, are rarely recorded by NDBC buoys because of power outages and anemometer failures that occur
under extreme winds [Powell et al., 2003]. Therefore, further improvement could be made through maintain-
ing more continuous wind gustiness records and incorporating them into the wind-wave model. Compared
to the sensitivity of SWH predictions, the PWP predictions at midlake buoys and near the shallow-water sta-
tion 45013 are reproduced satisfactorily by both models regardless of the type of wind field used.

Figure 9 maps the spatial distribution of water depth, maximum total energy dissipation, whitecapping, and
depth-induced wave breaking based on the un-SWAN model driven by the GEM wind data during the
northerly winds that dominated Superstorm Sandy (2012). The total wave energy dissipation is appreciable
near the southeastern coast and eastern portion of the South Chippewa Basin, but insignificant in the Chip-
pewa Basin and near other coasts. Figures 9c and 9d illustrate that the energy dissipation in deepwater
regions is dominated by whitecapping with dissipation reaching approximately 10-15 W/m?. The spatial
similarity between the regions for maximum whitecapping dissipation and SWH (not shown here) indicates
that the wind-induced extreme waves in the midlake region are primarily dissipated through steepness-
related whitecapping. However, the intensity of deepwater whitecapping dissipation declines gradually as
waves propagate toward shallower zones (20 m < water depth <40 m), and energy dissipation is eventually
dominated by depth-induced breaking in nearshore regions (10 m < water depth <20 m). Even though
shallow-water wave breaking only occurs over a narrow strip along the southeastern shore of the lake, the
maximum dissipation intensity therein reaches as high as 36.5 W/m?>.

4, Model Sensitivity

To individually address the above factors that have improved model accuracy, sensitivity analyses over the
ice-free period of the year 2011 were conducted. In particular, we included alternative sources for wind
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Figure 9. Spatial distributions of (a) water depth and maximum (b) total energy dissipation, (c) whitecapping dissipation, and (d) depth-
induced wave breaking during Superstorm Sandy (2012).

fields (GEM, CFSv2, and NNM), various combinations of wind input and whitecapping formulations [e.g.,
Komen et al.,, 1984; recalibrated Rogers et al., 2003; van der Westhuysen et al., 2007], different settings for
depth-induced breaking (e.g., the BJ78 and TG83 models), and additional mesh types (the OC structured
grid, and the MR and HR unstructured meshes). The SWH and PWP estimated from each model are com-
pared with in situ wave observations from buoys in the midlake area (45002 and 45007), Little Traverse Bay
(45022), and along the southwestern (45018) and southeastern shores (45026).

4.1. Sensitivity to Alternative Sources of Wind Fields

Three sources of wind field data, namely the fields of the atmospheric models GEM and CFSv2, and
observation-based NNM fields, were used to drive the MR un-SWAN wave model. The default deepwater
wave growth formulation of Snyder et al. [1981] and Komen et al. [1984] (WAM Cycle 3, henceforth denoted
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Figure 10. a. Scatterplots of wind speeds from the (top) GEM (Usq em, (middle) CFSv2 (Usg crsy2), and (bottom) NNM (Uqonwm) Wind fields versus observed wind speed values (Usq,ops)
taken at various NDBC buoys. Note: because no wind data are available at station 45018, the observed winds from the adjacent FSTI2 station are used. b. Scatterplots of modeled SWH
values from the un-SWAN model with default deepwater wave growth formulation [Komen et al., 1984] driven by the (top) GEM (Hsig,Genm + wams), (middle) CFSV2 (Hsig,crsvz+ wams), and
(bottom) NNM wind fields (Hsignnm-+wawms) versus observations of SWH (Hgig,0b5) from various NDBC buoys.

WAM3) was applied to these three simulations. The comparisons of various wind fields with NDBC buoy
data are shown in Figure 10a. Note that buoy winds at station 45018 are missing and were replaced with
winds from the adjacent station FSTI2. Figure 10b shows the scatterplots for SWH produced with un-SWAN
model using the three different wind fields. The wind speeds determined from either atmospheric model
scatter around the line of perfect agreement, whereas the observation-based NNM winds yield superior sta-
tistical scores for the RB, SI, CC, and RMSD for all buoy stations. At the northern and southern midlake buoys,
the RB scores for the CFSv2 winds are 11.2% and 9.1%, which are reduced to less than 3.2% and 1% with
the GEM and NNM winds, respectively. As a direct result of the overestimation of wind speeds, SWHs are
slightly overestimated, e.g., by 3.8% at station 45002 and 8.9% at station 45007 using the GEM data, and
this effect is enhanced to over 20.7% when the relatively stronger CFSv2 winds are used. Relative to the
SWH overpredictions driven by atmospheric model winds, SWH is consistently underestimated when
the observation-based NNM winds are used, e.g., by —16.1% at station 45002 and —12% at station 45007;
this bias is especially notable for extreme values. Overall, SWHs at midlake buoys determined from the GEM
fields outperform the NNM-based predictions by providing more favorable values for the SI, NSTD, and
RMSD. For the intermediate-water stations 45022 and 45026, none of the three wind fields consistently pro-
duce strong scores for the SI, NSTD, and RMSD. At the shallow-water station 45018 (with a water depth less
than 5 m), all three simulations show a consistently overestimated SWH with large RB scores, especially for
wave heights in the range of 0.5-1 m.

To further investigate the SWH variation created by different wind models, Figure 11 presents the spatial
distributions of maximum wind speeds and corresponding wave fields using the GEM, CFSv2, and NNM
wind fields. During a northerly clipper storm (September 29-30, 2011), both the GEM and CFSv2 winds
show a smoothly increasing trend of wind intensity southward along the lake’s longitudinal axis (20—
24 m/s), whereas the NNM wind field is characterized by several small lobes of local wind speed maxima
(24-32 m/s) distributed around the lake’s perimeter. These spatial differences are caused by the assimilation
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Figure 10. (continued)

of wind data in the atmospheric models from multiple observational sites across the entire lake [Coté et al,
1998; Saha et al., 2014], whereas the observational data-based wind field is heavily dependent upon the lim-
ited buoys at midlake and near the coast, as well as the meteorological stations at coastal land sites [Lang
and Leshkevich, 2014].

Similar to the spatial patterns of atmospherically modeled wind fields, the wind-induced waves increase in
intensity along the lake’s major axis, but to a greater degree, presumably because of the nonlinear depend-
ence of SWH on wind speed and the enhanced wind fetch distance in the downwind direction (Figure 11).
In addition, the weaker GEM winds (relative to the CFSv2 winds) and the spatial incoherence of the NNM
wind field are reflected in the associated wave field. In particular, wave heights driven by the atmospheric
models exceed 6 m in the South Chippewa Basin, while they are less than 5 m near the adjacent southeast-
ern coast when derived from the observational data-based winds. Because the interpolation distance of the
NNM wind field is 30 km [Beletsky and Schwab, 2001], significant underestimations of wave height at the
southern midlake buoy 45007 (see also Figure 10b) tend to originate from both reduced wind intensity and
shorter fetch distance along the lake’s longitudinal axis. Another possible explanation is that the frequent
variations in wind direction recorded at land-lake boundary sites may be transmitted into the lake’s interior
through the smoothing interpolation process of the NNM, which would further impede wave growth in that
model. In contrast, the spatially coherent GEM and CFSv2 wind fields would facilitate the full development
of larger wind waves.

Previous studies indicated that improvements to wave simulations could be achieved through the use of
higher quality wind fields. For example, Jensen et al. [2012] reported that deepwater waves were more accu-
rately captured by the WW3 model using the spatially coherent CFSR wind data, whereas the shallow-water
waves were better reproduced by adopting the locally optimized NNM winds from GLERL. Alves et al. [2014]
confirmed that using the spatially coherent NAM wind field with the WW3 model outperformed using the
NNM wind field with the same model for simulating deepwater waves under storm conditions. Accordingly,
a more accurate wind field can be constructed with appropriate blending of atmospherically modeled and
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Figure 11. Spatial distributions of the maximum wind speeds determined with the (a) GEM, (b) CFSv2, and (c) NNM wind fields, and (d-f) corresponding SWHs, during a 2011 clipper
storm. Note that black crosses denote the locations of midlake buoys 45002 and 45007, and that black circles cover the adjacent interpolation smoothing distance (30 km) for the NNM.

observational wind data [He et al., 2004], or with increased spatial coverage by lake buoys that collect data
for the construction of observational data-based NNM wind fields [Schwab and Morton, 1984]. Based on the
greater spatial coherence of the GEM wind field and higher predictive skill of the un-SWAN model for repro-
ducing midlake extreme waves, these methods are adopted to explore other factors that may further
improve the simulation.

4.2. Sensitivity to Wave Physics Formulations

To investigate the contribution of the representation of wave physics to the model inaccuracies described
above, this section explores alternative formulations for both deepwater and shallow-water source terms.
4.2.1. Comparison of Wind Input and Whitecapping Formulations

Sensitivity experiments for deepwater wave physics were conducted using three different combinations of
wind input and whitecapping dissipation terms (Cases 1a-1c in Table 3). Case 1a represents the default
Komen et al. [1984] expression with a dissipation rate of C4=2.36X10">, and weighting of the relative
wave number at 6=0. Case 1b replaces the default wind input formula of Snyder et al. [1981] with that of
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Figure 12. a. Scatterplots of modeled SWHs from the un-SWAN model with various wind input and whitecapping settings versus observed SWH values (Hsjg, b taken at various NDBC
buoys. (top) Hqig,c1q for the Case 1a [Komen et al,, 1984], (middle) Hiig,c for the Case 1b [recalibrated Rogers et al., 2003], and (bottom) Hijg,c;c for the Case 1c [van der Westhuysen et al.,
2007] formulations for deepwater wave physics. b. Same as Figure 12a except for that SWH (Hs;) is replaced with PWP (T,q4). C. Same as Figure 12a except for that the SWH values (Hsg)
are replaced with extreme values (above the 99.5th percentile) from the midlake buoys 45002 and 45007.
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Figure 12. (continued)

Janssen [1991], which is implemented with WAM Cycle 4 (WAM4), and adjusts the tuning parameters to Cys
=3.0X107> and §=0.3. This tuning strategy, similar to the original settings of Rogers et al. [2003], has the
effect of shifting the wave dissipation toward higher frequencies, and also matches the spectrum defined
by Pierson and Moskowitz [1964]. Case 1c considers a saturation-based whitecapping dissipation approach
[van der Westhuysen et al., 2007, hereafter referred to as WF07] with a recalibrated threshold level B,=1.75X
1073 and dissipation rate of C4=5.0X107".

Figures 12a-12c show the scatterplots for SWH, PWP, and SWH above the 99.5th percentile produced with
the un-SWAN model versus observational data from various NDBC buoys using the above described deep-
water wave physics settings. Overall, the NSTD score for SWH in Case 1b slightly outperforms Case 1a
except for at the extreme shallow station 45018. The scores for the RB, SI, CC, NSTD, and RMSD for PWP at
midlake buoys are significantly improved from Case 1a to Case 1b. This observation confirms the finding of
Rogers et al. [2003] that increasing the weighting on the relative wave number improves the representation
of whitecapping dissipation and PWP in wave frequency spectra. Under extreme conditions (i.e., SWH above
the 99.5th percentile), Case 1b is found to have stronger values for the RB, SI, CC, and RMSD at both midlake
stations. In particular, the RBs increased from —0.25 to —0.176 at buoy 45002 and from —0.109 to 0.042 at
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buoy 45007. An explanation for this improvement is that the wind input formulation of Janssen [1991] pro-
duces faster wave growth (i.e., quadratic dependence on u+/c) than that of Snyder et al. [1981] (i.e., linear
dependence on u+/c) under strong wind forcing (i.e., u/c > 0.1), see details in equations (4) and (5). However,
this change becomes insignificant at shallower water-depth stations where wave processes such as depth-
induced breaking become a key factor affecting wave dynamics.

Overall, the un-SWAN model with the WF07 expression yields comparable accuracy for SWH at midlake to
that in the default model, but it reveals advantages by producing stronger RB, SI, NSTD, and RMSD scores at
the extreme shallow-water station 45018. Under extreme wave conditions, the adoption of the WF07 formu-
lation improves the accuracy of SWH values for the southern midlake buoy. However, the degree of
improvement is not as great as that achieved using the recalibrated Rogers et al. [2003] formulation. On
average, all cases tend to provide results more consistent with the observational data for SWH and PWP at
intermediate-water and deepwater buoys than for shallow-water stations. Donelan et al. [2006] postulated
that conventional wind input formulations [e.g., Komen et al., 1984; Yan, 1987; Janssen, 1991] used for wave
generation ignored the effect of air-sea flow separation, which may result in inaccurate estimation of
momentum transfer in a young wave field, e.g., short-fetch wave growth near the shallow coast. Addition-
ally, wind speeds and directions at land-lake interface stations (e.g., FSTI2, 45026, and 45022) are highly
complex and unpredictable because of abrupt transitions of the atmospheric boundary layer.

Although models with Cases 1b and 1c settings show comparable levels of predictive skill, the deepwater
wave physics represented by Case 1b is adopted for further study because of its superior ability for extreme
wave simulation.

4.2.2. Parameterization of the Depth-Induced Breaking Term

After the deepwater source terms above have been selected, sensitivity studies turn to shallow-water wave
physics, especially for the depth-induced breaking term (Cases 2a-2c in Table 3). Case 2a incorporates
monthly lake level anomalies, Case 2b decreases the default breaker index yg, to 0.3, and Case 2c uses the
alternative TG83 model with a default breaker index of y;;,=0.42.

Figure 13 shows the SWH scatterplots for Cases 2a—-2c versus observational data taken near the shallow
southwestern (45018) and southeastern coasts (45026). As expected, the modifications to the depth-
induced breaking term only influence the wave dynamics in shallow water (deepwater stations are not
shown here), particularly at the shallowest-water station 45018. At this station, when monthly lake level vari-
ability is applied (Case 2a) to the model with constant water depth (Case 1b in Figure 12a), the RB, SI, NSTD,
and RMSD scores are reduced slightly from 0.37 to 0.34, 0.58 to 0.55, 1.46 to 1.42, and 0.19 to 0.18 m,
respectively. However, these values are further reduced greatly (e.g. the RB is decreased by about two
thirds, and the SI, NSTD, and RMSD decrease by about half) by reducing the breaker index yg, in Case 2b,
presumably because of increased breaking intensity at the maximal individual wave height for a given
water depth. It is noteworthy that in Case 2c, not only is the RB of Case 2a for station 45018 reduced by
about half, but that high skill level is also maintained for station 45026. Therefore, the Case 2c settings are
adopted for depth-induced breaking in the proposed model; its sensitivity to various mesh types is exam-
ined in the following section.

4.3. Sensitivity to Mesh Types

Figure 14 shows the scatterplots for SWH with the application of alternative mesh types, specifically the OC
structured mesh (top), and the MR (middle, same as that applied above) and HR unstructured meshes (bot-
tom). At midlake, all three configurations yield comparable accuracy for SWH, as expected. This consistency
also holds true for the intermediate-water stations 45022 and 45026 where water depth is greater than
about 20 m, which suggests that both the OC structured grid and the MR unstructured meshes can resolve
offshore waves accurately. However, a clear difference can be detected at the shallow-water station 45018
(water depth = 3.9 m) where the model with the MR unstructured mesh outperforms the OC grid by reduc-
ing the scores of RB, SI/RMSD, and NSTD by about two thirds, half, and quarter, respectively.

To assess these spatial differences, Figure 15 presents the spatial distributions of water depth, maximum
wind speeds and SWHs from the MR un-SWAN model, OC SWAN minus HR un-SWAN, and MR minus HR un-
SWAN. During a clipper storm, the northerly winds (U;o = 8-24 m/s) increase along the lake’s longitudinal
axis and turn northwesterly in an anticlockwise direction, which produces extreme waves with SWHs over
6 m in the South Chippewa Basin. Spatially, the relative differences in SWHs from the application of various

MAO ET AL.

WAVE LAKE MICHIGAN 3857



@AGU Journal of Geophysical Research: Oceans 10.1002/2015JC011340

Figure 13. Scatterplots of modeled SWHs from the un-SWAN model with various depth-induced breaking settings versus observed SWH
values (Hsig,ops) taken at the shallow-water buoys 45018 and 45022. (top) Hgig,c2a from Case 2a (the BJ78 model with default y5,=0.3), (mid-
dle) Hjg,c2 from Case 2b (the BJ78 model with a decreased y5,=0.3), and (bottom) Hyjg, o from Case 2c (the TG83 model with default
776=0.42) for estimating shallow-water wave physics.

mesh resolutions (i.e, MR and HR) are less than 10% in the South Chippewa Basin, 20% in most shallow-
water regions, and 30% scattered in the shallow part of Green Bay and near the northern coast. By replacing
the HR unstructured mesh with the OC structured grid, however, these variations spread, with relative dif-
ferences of 20-60% spreading widely across the lake, reaching as high as 80% adjacent to the shallow
northern coast and around North Manitou Island (note that different scales are used in Figures 15c and
15d). This phenomenon is presumably because of different degrees of resolution for shallow-water wave
processes with these different configurations of mesh type. Although strong waves prevail in the South
Chippewa Basin, the variability in prediction of SWH among the three mesh types is insignificant because
the smooth bathymetry in that region has already been resolved adequately with each mesh type.

The above findings enable us to confirm that the un-SWAN model with the MR unstructured mesh is able
to reproduce wave heights as accurately as the HR version, but significantly outperforms the OC version for
nearshore waves (water depth <20 m). In addition, we find that the simulation of the MR un-SWAN is the
most efficient version; it requires approximately one half and one fifth the computational time of the OC
SWAN and HR un-SWAN, respectively (Table 4).
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Figure 14. Scatterplots of modeled SWHs, (Hsig,oc, Hsigmr and Hiig 1g) from the wave model using (top) orthogonal curvilinear, (middle) medium-resolution, and (bottom) high-resolution
meshes, respectively, versus observed SWH values (Hsig,ops) taken at various NDBC buoys.

5. Discussion

In this study, we have demonstrated that wind forcing, deepwater (i.e., wind input and whitecapping) and
shallow-water wave physics (i.e., depth-induced breaking) play significant and distinct roles in the wave
dynamics of deepwater, intermediate-water, and shallow-water regions. This finding is consistent with the
conclusions drawn by Huang et al. [2013] who investigated the dynamic responses of wave energy dissipa-
tion to Hurricane lke (2008) over different regions of the Gulf of Mexico. Huang et al. [2013] made meaning-
ful improvements to wave simulation under hurricane conditions (in which wind speed reaches 43-49 m/s)
by adopting different bulk formulae [e.g., Large and Pond, 1981; Wu, 1982; Oey et al., 2006] and/or setting
cutoff values (e.g., Cgeqp=2.5, or wind speed U;q = 26.2 m/s) for the wind drag coefficient in the un-SWAN
model. However, the maximum U, in Lake Michigan (23.6 m/s in 2011 and 21.0 m/s in 2012) is below the
cutoff limit suggested by Huang et al. [2013]. Therefore, the improvements made in this study to storm
wave simulation for midlake buoys were achieved by selecting different sources of wind fields for model
input and alternative settings for the formulations of wind input and whitecapping. For example, using the
spatially coherent GEM winds led directly to higher accuracy in the reproduction of midlake extreme waves,
whereas the un-SWAN model driven by the locally optimized (i.e., point-to-point comparison with NDBC
buoy stations), observation-based NNM winds resulted in superior reproduction of shallow-water waves.
Moreover, van der Westhuysen et al. [2007] noted that the wind input term becomes nonlinear for strongly
forced waves (u./c > 0.1). Accordingly, a quadratic dependence [e.g., Janssen, 1991] of the wind-induced
growth rate on the wind forcing parameter (u../c) is more realistic than a formulation based on a linear rela-
tionship [e.g., Snyder et al, 1981; Komen et al., 1984]. To comply with the “closure mechanism” of wave
action spectral energy, the tunable parameters for the whitecapping term (i.e.,, C4 and ) used by Rogers
et al. [2003] were also slightly recalibrated herein.

Because of the relatively smaller geographic scale of this area, with a regional-scale O (100 km) domain, and
because of its weaker wind conditions (U is usually less than 20 m/s), the intensity of wave energy dissipa-
tion from whitecapping (e.g., 15 W/m? maximum) in Lake Michigan is lower than that in the Gulf of Mexico
(e.g., 20 W/m? maximum) [Huang et al., 2013]. However, the energy dissipation transitional zone (20

MAO ET AL.

WAVE LAKE MICHIGAN 3859



@AGU Journal of Geophysical Research: Oceans 10.1002/2015JC011340

Figure 15. Spatial distributions of the maximum (a) wind speed and (b) SWH, and the differences in percentages of SWHs from (c) the MR
un-SWAN results minus the HR un-SWAN results, and (d) the OC SWAN results minus the HR un-SWAN results, during a clipper storm in
2011. Note the difference in scale between Figures 15c¢ and 15d.

m < water depth < 40 m) that converts from whitecapping to depth-induced breaking was found to be sim-
ilar in both domains. Consequently, the wave statistics for shallow-water stations were insensitive to modifi-
cation by the whitecapping term, but strongly dependent upon the treatment of the depth-induced
breaking term. By considering monthly lake level variations and decreasing the breaker index yg, of the
default BJ78 model, or by using an alternative TG83 model, the RB scores for the shallowest-water station
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Figure 16. a. Scatterplots of modeled SWHs from the (first and third rows) recalibrated wave-only (H;g,rc) and (second and fourth rows) wave-current interactions (WCl) coupled models
(Hsig,rec+ we) Versus observed SWH values (Hgig, ob5) taken at various NDBC buoys in 2012. b. Scatterplots of modeled PWPs from the (first and third rows) recalibrated wave-only (Tpeqx rec)
and (second and fourth rows) wave-current interactions (WCl) coupled models (Tjeax rec+ wc) Versus observed PWP values (Tpear obs) taken at various NDBC buoys in 2012.

45018 were reduced from 0.37 to 0.34, 0.12, and 0.19, respectively. However, a slight decrease in the statisti-
cal accuracy of SWH was detected for the southeastern shore station 45026. Because of the complexity of
wind-wave-bathymetry interactions, distinct wave growth conditions between the southwestern (45018)
and southeastern (45026) locations may require different treatments for the breaker index [van der Westhuy-
sen, 2010]. Under the conditions of finite water depth (with offshore winds near the southeastern coast)
and sloping surf (with onshore winds near the southwestern coast), the responding statistical scores (i.e.,
the RB and SI) indicate an optimal minimum and a constantly increasing trend when the breaker index of
the BJ78 model is decreased. The breaker indices for the BJ78 and TG83 models were rescaled to different
values (yg;=0.3 and y;,=0.42) for the depth-induced breaking term because they adopt different assump-
tions of the probability density function for breaking waves [van der Westhuysen, 2010; Salmon et al., 2015].

One of our key findings is that the wind data used as model input (GEM, CFSv2, and NNM) show better
agreement with the NDBC buoy data at midlake than along the lake’s shoreline, most likely because the
wind speeds at the land-lake interface are highly dynamic and complex, with abrupt transitions of the
atmospheric boundary layer [Schwab and Morton, 1984] and/or the short-fetch, limited wave growth condi-
tions [Breugem and Holthuijsen, 20071]. In addition, the traditional wind input formulation adopted in the cur-
rent third-generation wave model may overestimate the transfer of momentum in a young wind-wave
field, which would limit the level of model improvement for this region [Donelan et al., 2006; van der

MAO ET AL.

WAVE LAKE MICHIGAN 3861



@AGU Journal of Geophysical Research: Oceans 10.1002/2015JC011340

Figure 16. (continued)

Westhuysen et al., 2007]. Alves et al. [2014] indicated that a wave model (e.g., GLERL or WW3) with improved
physical parameterization for short-fetch wave growth could potentially yield superior storm wave simula-
tion for the Great Lakes system. Based on these considerations, a thorough analysis and revisitation of
energy transfer and wind-wave-bathymetry interactions in Lake Michigan would likely be a worthwhile
future endeavor.

It must be emphasized that wave-current interactions (WCI) may have significant impacts on wave dynam-
ics through a variety of processes (e.g., alteration of wave age and energy dissipation by the presence of
current, or depth-induced and current-induced wave frequency shifting and refraction). However, the
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noticeable influence of these effects is largely confined to extremely shallow regions where current intensity
and water depth variation are appreciable, as in tidal inlet areas [van der Westhuysen, 2012; van der Westhuy-
sen et al., 2012; Dodet et al., 2013]. In a large, semienclosed or enclosed basin, this effect might be neglected
because of relatively weaker current conditions and the absence of tidal modulation on water depth (e.g.,
wetting and drying processes). Benetazzo et al. [2013] showed that the SWH variation caused by the follow-
ing/opposite currents in the Adriatic Sea (a semienclosed basin) was 0.1 and 0.6 m during the weak Sirocco
and strong Bora events, respectively. In Lake Michigan, storm waves are affected to some degree by WCI,
but it is of secondary importance compared to the variations that result from using alternative wind field
sources and different formulations to describe deepwater and shallow-water wave physics (not shown
here). Moreover, changes to the statistical indices (i.e., the RB, SI, CC, NSTD, and RMSD) for SWH and PWP
values caused by the WCI effect over a long-term (8 months) wave simulation are insignificant (Figures 16a
and 16b). Furthermore, the WCl-coupled model only achieves a slightly faster computational speed than
the wave-only model at the cost of six times the computational cores (Table 4); therefore, the recalibrated
wave-only model was selected to apply in this study. We do suggest, however, that it may be of interest in
the future to explore the effects of WCl under storm conditions for shallower lakes (e.g., Lake Erie where the
average water depth is 19 m), particularly during periods of high storm surges and intense currents.

6. Conclusions

This study investigated factors that lead to the improvement of a third-generation spectral wind-wave
SWAN model for Lake Michigan. We compared observational data for SWHs and PWPs from the NDBC
buoys to values produced through models using various sources for wind fields, alternative settings for
deepwater and shallow-water wave physics, and different mesh types. The main conclusions are as follows:

1. The GEM atmospheric model yields a spatially coherent wind field (i.e., smooth gradient of wind inten-
sity) over the lake, whereas the observation-based NNM wind field agrees strongly with the NDBC buoy-
recorded data. Consequently, the un-SWAN model driven by the GEM wind data captures extreme waves
in the midlake region more accurately, while the model that uses the NNM wind data reproduces the
SWHs along the lake’s shoreline more accurately.

2. Whitecapping dissipation is dominant in deep water (water depth >40 m), whereas depth-induced
breaking is the primary dissipation mechanism in the nearshore regions (10 m < water depth <20 m).
Based on the GEM wind data, the un-SWAN model with the wind input formulation of Janssen [1991]
and the recalibrated whitecapping formulation of Rogers et al. [2003] provided the best agreement with
buoy observations at midlake and intermediate-water stations, especially for extreme wave heights. In
the extreme shallow-water region, model improvement is achieved by reducing the breaker index yg, or
adopting the TG83 model for depth-induced breaking.

3. Mesh types (specifically the OC SWAN and MR un-SWAN meshes) clearly affect the modeling of wave
dynamics in nearshore regions characterized by complex bathymetry and irregular geometry. The MR
un-SWAN model not only captures the wave processes from deep to shallow waters as accurately as the
HR version, but it also greatly outperforms the OC SWAN model for nearshore waves. The model with the
MR unstructured mesh configuration was found to be the most accurate and computationally efficient
choice for Lake Michigan wave simulation.

References

Alves, J. H. G, A. Chawla, H. L. Tolman, D. J. Schwab, G. Lang, and G. Mann (2014), The operational implementation of a great lakes wave
forecasting system at NOAA/NCEP, Weather Forecast., 29(6), 1473-1497.

Battjes, J. A, and J. P. F. M. Janssen (1978), Energy loss and set-up due to breaking of random waves, in Coastal Engineering, pp. 569-588,
Am. Soc. Civ. Eng., N. Y.

Beletsky, D., and D. J. Schwab (2001), Modeling circulation and thermal structure in Lake Michigan: Annual cycle and interannual variability,
J. Geophys. Res., 106(C9), 19,745-19,771.

Beletsky, D., and D. J. Schwab (2008), Climatological circulation in Lake Michigan, Geophys. Res. Lett., 35, L21604, doi:10.1029/
2008GL035773.

Benetazzo, A., S. Carniel, M. Sclavo, and A. Bergamasco (2013), Wave-current interaction: Effect on the wave field in a semi-enclosed basin,
Ocean Modell., 70, 152-165.

Booij, N., R. C. Ris, and L. H. Holthuijsen (1999), A third-generation wave model for coastal regions: 1. Model description and validation,
J. Geophys. Res., 104(C4), 7649-7666.

MAO ET AL.

WAVE LAKE MICHIGAN 3863


http://dx.doi.org/10.1029/2008GL035773
http://dx.doi.org/10.1029/2008GL035773
http://rda.ucar.edu
http://www.ndbc.noaa.gov
http://www.glerl.noaa.gov/data/dashboard/GLWLD.html
http://www.glerl.noaa.gov/data/dashboard/GLWLD.html

@AGU Journal of Geophysical Research: Oceans 10.1002/2015JC011340

Breugem, W. A,, and L. H. Holthuijsen (2007), Generalized shallow water wave growth from Lake George, J. Waterw. Port Coastal Ocean
Eng., 133(3), 173-182.

Cavaleri, L. (2009), Wave modeling—Missing the peaks, J. Phys. Oceanogr., 39(11), 2757-2778.

Chen, C, L. Wang, R. Ji, J. W. Budd, D. J. Schwab, D. Beletsky, G. L. Fahnenstiel, H. Vanderploeg, B. Eadie, and J. Cotner (2004), Impacts of sus-
pended sediment on the ecosystem in Lake Michigan: A comparison between the 1998 and 1999 plume events, J. Geophys. Res., 109,
10505, doi:10.1029/2002JC001687.

Collins, J. 1. (1972), Prediction of shallow-water spectra, J. Geophys. Res., 77(15), 2693-2707.

Coté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth (1998), The operational CMC-MRB Global Environmental Multiscale
(GEM) Model. Part I: Design considerations and formulation, Mon. Weather Rev., 126(6), 1373-1395.

Dietrich, J. C,, M. Zijlema, J. J. Westerink, L. H. Holthuijsen, C. Dawson, R. A. Luettich Jr., R. Jensen, J. M. Smith, G. S. Stelling, and G. W. Stone
(2011), Modelling hurricane waves and storm surge using integrally-coupled, scalable computations, Coastal Eng., 58, 45-65.

Dietrich, J. C,, et al. (2013), Limiters for spectral propagation velocities in SWAN, Ocean Modell., 70, 85-102.

Dodet, G., X. Bertin, N. Bruneau, A. B. Fortunato, A. Nahon, and A. Roland (2013), Wave-current interactions in a wave-dominated tidal inlet,
J. Geophys. Res. Oceans, 118, 1587-1605, doi:10.1002/jgrc.20146.

Donelan, M. A,, A. V. Babanin, I. R. Young, and M. L. Banner (2006), Wave-follower field measurements of the wind-input spectral function.
Part IIl: Parameterization of the wind input, J. Phys. Oceanogr., 36(8), 1672-1689.

Gelci, R, and H. Cazalé (1953), Une théorie énergétique de la houle appliquée au Maroc, C. R. Soc. Sci. Nat. Phys. Maroc., 4, 64-66.

Gronewold, A. D., and C. A. Stow (2014), Water loss from the Great Lakes, Science, 343(6175), 1084-1085.

Hasselmann, K. (1974), On the spectral dissipation of ocean waves due to white capping, Boundary Layer Meteorol., 6(1-2), 107-127.

Hasselmann, K., et al. (1973), Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP),
Dtsch. Hydrogr. Z., A12, 95.

He, R, Y. Liu, and R. H. Weisberg (2004), Coastal ocean wind fields gauged against the performance of an ocean circulation model, Geophys.
Res. Lett., 31, 14303, doi:10.1029/2003GL019261.

Huang, Y., R. H. Weisberg, L. Zheng, and M. Zijlema (2013), Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula-based
drag coefficient sensitivity for Hurricane lke, J. Geophys. Res., 118, 3916-3938, doi:10.1002/jgrc.20283.

Janssen, P. A. E. M. (1991), Quasi-linear theory of wind-wave generation applied to wave forecasting, J. Phys. Oceanogr., 21(11), 1631-1642.

Janssen, P. A. E. M. (1992), Consequences of the effect of surface gravity waves on the mean air flow, in Breaking Waves: IVTAM Symposium,
edited by M. L. Banner and R. H. J. Grimshaw, pp. 193-198, Springer.

Jensen, R. E, M. A. Cialone, R. S. Chapman, B. A. Ebersole, M. Anderson, and L. Thomas (2012), Lake Michigan storm: Wave and water level
modeling, Rep. ERDC/CHL-TR-12-26, U.S. Army Eng. Res. and Dev. Cent. Coastal and Hydraul. Lab., Vicksburg, Miss.

Kerr, P. C,, R. C. Martyr, A. S. Donahue, M. E. Hope, J. J. Westerink, R. A. Luettich, and H. J. Westerink (2013), U.S. I00S coastal and ocean
modeling testbed: Evaluation of tide, wave, and hurricane surge response sensitivities to mesh resolution and friction in the Gulf of
Mexico, J. Geophys. Res., 118, 4633-4661, doi:10.1002/jgrc.20305.

Komen, G. J,, S. Hasselmann, and K. Hasselmann (1984), On the existence of a fully developed wind-sea spectrum, J. Phys. Oceanogr., 14(8),
1271-1285.

Lang, G. A, and G. A. Leshkevich (2014), Persistent wind fields over the Great Lakes, 2002-2013, paper presented at 57th Annual Confer-
ence on Great Lakes Research, McMaster Univ., Hamilton, Ontario, Canada, 26-30 May.

Large, W. G., and S. Pond (1981), Open ocean momentum flux measurements in moderate to strong winds, J. Phys. Oceanogr., 11(3), 324~
336.

Lou, J., D. J. Schwab, D. Beletsky, and N. Hawley (2000), A model of sediment resuspension and transport dynamics in southern Lake Michi-
gan, J. Geophys. Res., 105(C3), 6591-6610.

Madsen, O.S., Y. K. Poon, and H. C. Graber (1988), Spectral wave attenuation by bottom friction: Theory, in Proceedings of the 21th Interna-
tional Conference on Coastal Engineering, pp. 492-504, Am. Soc. of Civ. Eng., Reston, Va.

Massey, T. C., M. E. Anderson, J. M. Smith, J. Gomez, and R. Jones (2011), STWAVE: Steady-State Spectral Wave Model User’s Manual for
STWAVE, Version 6.0. ERDC/CHL SR-11-1, U.S. Army Eng. Res. and Dev. Cent., Vicksburg, Miss.

Nelson, R. C. (1987), Design wave heights on very mild slopes-an experimental study, Civ. Eng. Trans. Inst. Eng. Aust., 29(3), 157-161.

Oey, L.-Y,, T. Ezer, D. P. Wang, S. J. Fan, and X. Q. Yin (2006), Loop current warming by Hurricane Wilma, Geophys. Res. Lett., 33, L08613, doi:
10.1029/2006GL025873.

Pierson, W. J., and L. Moskowitz (1964), A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitai-
gorodskii, J. Geophys. Res., 69(24), 5181-5190.

Powell, M. D., P. J. Vickery, and T. A. Reinhold (2003), Reduced drag coefficient for high wind speeds in tropical cyclones, Nature, 422(6929),
279-283.

Rogers, W. E., P. A. Hwang, and D. W. Wang (2003), Investigation of wave growth and decay in the SWAN model: Three regional-scale appli-
cations, J. Phys. Oceanogr., 33(2), 366-389.

Rogers, W. E., J. M. Kaihatu, L. Hsu, R. E. Jensen, J. D. Dykes, and K. T. Holland (2007), Forecasting and hindcasting waves with the SWAN
model in the Southern California Bight, Coastal Eng., 54(1), 1-15.

Rogers, W. E., A. V. Babanin, and D. W. Wang (2012), Observation-consistent input and whitecapping dissipation in a model for wind-
generated surface waves: Description and simple calculations, J. Atmos. Oceanic Technol., 29(9), 1329-1346.

Ruessink, B. G., D. J. R. Walstra, and H. N. Southgate (2003), Calibration and verification of a parametric wave model on barred beaches,
Coastal Eng., 48(3), 139-149.

Saha, S, et al. (2014), The NCEP climate forecast system version 2, J. Clim., 27(6), 2185-2208.

Salmon, J. E,, L. H. Holthuijsen, M. Zijlema, G. P. van Vledder, and J. D. Pietrzak (2015), Scaling depth-induced wave-breaking in two-
dimensional spectral wave models, Ocean Modell., 87, 30-47.

Schwab, D. J., and J. A. Morton (1984), Estimation of overlake wind speed from overland wind speed: A comparison of three methods, J.
Great Lakes Res., 10(1), 68-72.

Schwab, D. J., D. Beletsky, and J. Lou (2000), The 1998 coastal turbidity plume in Lake Michigan, Estuarine Coastal Shelf Sci., 50(1), 49-58.

Sellinger, C. E,, C. A. Stow, E. C. Lamon, and S. S. Qian (2007), Recent water level declines in the Lake Michigan—Huron System, Environ. Sci.
Technol., 42(2), 367-373.

Snyder, R. L., F. W. Dobson, J. A. Elliott, and R. B. Long (1981), Array measurements of atmospheric pressure fluctuations above surface grav-
ity waves, J. Fluid Mech., 102, 1-59.

SWAN Group (2012a), SWAN Scientific and Technical Documentation—SWAN Cycle Ill Version 40.91, chap. 3, pp. 43-51, Delft Univ. of Tech-
nol., Delft, Netherlands. [Available at http://www.swan.tudelft.nl/.]

MAO ET AL.

WAVE LAKE MICHIGAN 3864


http://dx.doi.org/10.1029/2002JC001687
http://dx.doi.org/10.1002/jgrc.20146
http://dx.doi.org/10.1029/2003GL019261
http://dx.doi.org/10.1002/jgrc.20283
http://dx.doi.org/10.1002/jgrc.20305
http://dx.doi.org/10.1029/2006GL025873
http://www.swan.tudelft.nl/

@AGU Journal of Geophysical Research: Oceans 10.1002/2015JC011340

SWAN Group (2012b), SWAN User Manual-SWAN Cycle Ill Version 40.91, chap. 4, pp. 55-56, Delft Univ. of Technol., Delft, Netherlands. [Avail-
able at http://www.swan.tudelft.nl/.]

Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106(D7), 7183-7192.

Thornton, E. B, and R. T. Guza (1983), Transformation of wave height distribution, J. Geophys. Res., 88(C10), 5925-5938.

Tolman, H. L. (2002), User Manual and System Documentation of WAVEWATCH lll Version 2.22, Environ. Model. Cent., Mar. Model. and Anal.
Brach, NOAA.

Van der Westhuysen, A. J. (2010), Modeling of depth-induced wave breaking under finite depth wave growth conditions, J. Geophys. Res.,
115, C01008, doi:10.1029/2009JC005433.

Van der Westhuysen, A. J. (2012), Spectral modeling of wave dissipation on negative current gradients. Coastal Eng., 68, 17-30.

Van der Westhuysen, A. J., M. Zijlema, and J. A. Battjes (2007), Nonlinear saturation-based whitecapping dissipation in SWAN for deep and
shallow water, Coastal Eng., 54(2), 151-170.

Van der Westhuysen, A. J,, A. R. Dongeren, J. Groeneweg, G. P. van Vledder, H. Peters, C. Gautier, and J. C. C. Nieuwkoop (2012), Improve-
ments in spectral wave modeling in tidal inlet seas, J. Geophys. Res., 117, C00J28, doi:10.1029/2011JC007837.

Wau, J. (1982), Wind-stress coefficients over sea surface from breeze to hurricane, J. Geophys. Res., 87(C12), 9704-9706.

Yan, L. (1987), An improved wind input source term for third generation ocean wave modeling, Rep. 87-8, R. Dutch Meteorol. Inst.

Zijlema, M. (2010), Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids, Coastal Eng., 57(3), 267-277.

MAO ET AL.

WAVE LAKE MICHIGAN 3865


http://www.swan.tudelft.nl/
http://dx.doi.org/10.1029/2009JC005433
http://dx.doi.org/10.1029/2011JC007837

	l
	l
	l

