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Humic substances as a washing agent for Cd-contaminated soils
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� Leonardite is an excellent source of humic substances.
� Humic substances as a washing agent effectively removed Cd from contaminated soils.
� Cd in effluent was easily removed by Ca(OH)2.
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a b s t r a c t

Cost-effective and eco-friendly washing agents are in demand for Cd contaminated soils. Here, we used
leonardite-derived humic substances to wash different types of Cd-contaminated soils, namely, a silty
loam (Soil 1), a silty clay loam (Soil 2), and a sandy loam (Soil 3). Washing conditions were investigated
for their effects on Cd removal efficiency. Cadmium removal was enhanced by a high humic substance
concentration, long washing time, near neutral pH, and large solution/soil ratio. Based on the tradeoff
between efficiency and cost, an optimumworking condition was established as follows: humic substance
concentration (3150 mg C/L), solution pH (6.0), washing time (2 h) and a washing solution/soil ratio (5). A
single washing removed 0.55 mg Cd/kg from Soil 1 (1.33 mg Cd/kg), 2.32 mg Cd/kg from Soil 2 (6.57 mg
Cd/kg), and 1.97 mg Cd/kg from Soil 3 (2.63 mg Cd/kg). Cd in effluents was effectively treated by adding a
small dose of calcium hydroxide, reducing its concentration below the discharge limit of 0.1 mg/L in
China. Being cost-effective and safe, humic substances have a great potential to replace commonwashing
agents for the remediation of Cd-contaminated soils. Besides being environmentally benign, humic
substances can improve soil physical, chemical, and biological properties.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Soil contamination by Cd is a common problem in many parts of
the world, posing a threat to human health. In China, for example,
Cd is themost commonly occurringmetal contaminant in soils (The
Ministry of Environmental Protection and the Ministry of Land and
and Chemical Engineering,
.
Zone Research, China.
), nzhailongwang@163.com
Resources of the People’s Republic of China, 2014). As Cd cannot be
chemically or biologically degraded, immobilization or mobiliza-
tion becomes the technology of choice for the remediation of soils
that are contaminated with heavy metals (Bolan et al., 2014).

Immobilization may involve the addition to soil of solid adsor-
bents such as biochar (Yang et al., 2016; Lu et al., 2017; Wu et al.,
2017), while mobilization is often achieved by washing soil with
one or more of the following chemicals: metal chelating agents
(e.g., EDTA), salts (e.g., CaCl2, FeCl3), strong acids (e.g., HCl,
CH3COOH), or surfactants (e.g., 1-dodecylpyridinium chloride)
(Mulligan et al., 2001; Conte et al., 2005; Zeng et al., 2005; Makino
et al., 2007, 2008, 2016; Kulikowska et al., 2015a,b; Guo et al., 2016).
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Table 1
Basic properties of soil samples.

Unit Soil 1 Soil 2 Soil 3

Sand content % 40.5 24.8 81.9
Silt content % 50.1 56.3 15.2
Clay content % 9.4 18.9 2.9
Texture e Silty loam Silty clay loam Sandy loam
Organic carbon % 2.16 1.88 1.73
pH (H2O) e 6.57 6.16 5.51
Total Cd mg/kg 1.33 6.57 2.63
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Based on a desorption process, soil washing is one of the most
effective remediation techniques as it removes heavy metals from
contaminated soils (Dermont et al., 2008). Soil washing, however,
has the potential of causing problems. For example, the washing
agent EDTA is difficult to decompose (Tandy et al., 2004; Zeng et al.,
2005), and hence is detrimental to soil microbial health (Bucheli-
Witschel and Egli, 2001), soil porosity (Heil et al., 1999), and
groundwater quality. FeCl3 and strong acids could acidify soil and
adversely affect soil fertility and microbial activity (Rousk et al.,
2009). Many washing surfactants are toxic to microbes, and their
effluents could contaminate water bodies. Thus, there is an on-
going search for cost-effective and eco-friendly washing chem-
icals. In this regard, humic substances have the potential of
becoming the washing chemicals of choice (Soleimani et al., 2010;
Kulikowska et al., 2015b). Besides being environmentally benign,
humic substances can improve soil physical, chemical, and bio-
logical properties.

Humic substances are operationally divided into three fractions
based on their solubility in alkali or acid, namely, humic acid which
is, alkali-soluble, fulvic acid which is alkali- and acid-soluble, and
huminwhich is insoluble in both alkali and acid. Humic substances
have traditionally been viewed as a mixture of high molecular
weight (>10,000 Da), randomly coiled, negatively charged macro-
molecules. This concept, however, is being displaced by one in
which humic substances consist of aggregates of biologically
derived molecules of relatively low molecular weight
(200e3000 Da) bound by weak dispersive forces and forming mi-
celles in solution (Theng and Yuan, 2008; Theng, 2012). Organic
matter in soil is now broadly viewed as a continuum spanning the
full range from intact plant material to highly oxidized carbon in
carboxylic acids (Lehmann and Kleber, 2015).

Of particular relevance to the present investigation is the
abundant occurrence in humic substances of carboxyl and phenolic
hydroxyl groups, resulting in a cation exchange capacity (CEC) of
600e890 cmol(þ)/kg for humic acid and 1000e1230 for fulvic acid
(Tan, 2014) which is about 5e100 times higher than that of com-
mon clay minerals (Yuan et al., 2013). Humic substances can bind
heavy metals by forming surface complexes with carboxyl and
phenolic hydroxyl groups (Conte et al., 2005). Humic substances
can be extracted from a variety of materials, such as leonardite and
sewage sludge (Kulikowska et al., 2015a). Since leonardite may be
likened as ancient biochar, the humic substances extracted from
this source may be likened to a surface-activated biochar (Meng
et al., 2016).

We have developed a humic substances-based technology to
remove Cd from contaminated soils, involving the following steps:
(1), extracting humic substances from leonardite; (2), using the
humic substances as a washing agent; and (3), treating the resul-
tant effluent (wastewater). To this end, we obtained water-soluble
humic substances by treating leonardite with KOH, conducted
batch experiments to determine the effects of humic substance
concentration, liquid-solid ratio, solution pH, and washing time, on
Cd removal efficiency, and then used calcium hydroxide to treat the
washing effluent.

2. Materials and methods

2.1. Soil sampling and analysis

Samples of surface soil (0e30 cm) were collected from different
regions in China (Table 1). Soil 1 and Soil 2 were taken from two
contaminated farmlands near a nonferrous metal smelter in Hunan
Province that has been in operation for many decades. Soil 3 was
taken from an apple orchard in Yantai, Shandong Province, spiked
with Cd(NO3)2 solution (12 mg Cd/L) at a solid:liquid ratio of 5 (g/
ml), and aged at room temperature for two months. After air-
drying, grinding to pass a 2-mm sieve, and thorough mixing, the
soil samples were analyzed for the following properties: (1), par-
ticle size using a Mastersizer 2000 (Marlvern, UK); (2), organic
carbon using an elemental analyzer (Vario macro cube, Elementar,
Germany); (3), pH in distilled water (1:5 w/v ratio) using a pH
meter (Mettler Toledo, Switzerland); and (4), pseudo-total Cd
concentration by placing 1 g of soil (dried at 105 �C) into a poly-
tetrafluoroethylene vessel, adding a HCl:HNO3 mixture (Sino-
pharm, China) at 3:1 ratio (v/v), and heating in a microwave oven
(one-stage program; t ¼ 160 �C). After cooling, the extracts were
filtered through 0.45 mmmembrane into 50mL glass flasks, filled to
the mark with ultra-pure water, and analyzed by inductively
coupled plasma mass spectrometry (ICP-MS) (Elan DRC II, Perki-
nElmer, USA).

2.2. Humic substances and their analysis

The humic substances were obtained by extracting a leonardite
from Shanxi Provincewith 0.1 M KOH, acidifying the extract to pH 7
with HCl, and keeping the supernatant. By operational definition,
the derived humic substances comprise a mixture of water-soluble
humic acid and fulvic acid. The high solubility of the material is of
fundamental importance for our purposes as conventional humic
acid is practically insoluble inwater, and hence is unsuitable for use
as a washing agent, while the cost of producing conventional fulvic
acid is uneconomical for this purpose.

The humic substances were analyzed for (1), elemental
composition using the same elemental analyzer mentioned above;
(2), content of carboxyl and phenolic groups by an International
Humic Substances Society method (IHSS, 2016); (3), surface ten-
sion at pH 6 using a tensiometer (Fangrui, China); (4), critical
micelle concentration (CMC) by plotting surface tension against
humic substance concentration; and (5), total heavy metal con-
centration by weighing 0.1 g of dried (105 �C) humic substances
into a polytetrafluoroethylene vessel, adding a HClO4:HNO3:HF
mixture (Sinopharm, China) at a 3:1:1 ratio (v/v/v), and heating in a
microwave oven. The extracts were then filtered through 0.45 mm
membrane into 50-mL glass flasks, filled to the mark with ultra-
pure water, and analyzed with the same ICP-MS mentioned above.

2.3. Establishing optimum washing conditions

The washing efficiency of the humic substances from leonardite
was compared with that of a commercial fulvic acid (Shanghai
Macklin Biochemical Co., Ltd.) with a chemical formula of C14H12O8,
a molecular weight of 308.2 Da, a carboxyl content of 3.17 mol(þ)/
kg C, and a hydroxyl content of 3.04 mol(þ)/kg C.

The effect of washing conditions on Cd removal efficiency was
assessed by batch experiments conducted in duplicate at room
temperature. Polyethylene tubes containing soil samples and so-
lutions of either humic substances or fulvic acid were placed on a
shaker, oscillating at 120 rpm. The variables included humic
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substances or fulvic acid concentration (0, 157.5, 315, 630, 945,
1260, 1575, 1890, 2520, 3150, 3780, and 4725 mg C/L), solution/soil
ratio (3, 5, 7, 9, 10, 12, 15, 20, 30 v/w), solution pH (3, 4, 5, 6, 7, 8, 9),
and washing time (0.5, 1, 2, 4, 6, 8, 12 h). At the end of the washing
cycle, the tubes were centrifuged at 3000 rpm for 15 min, the su-
pernatants were filtered through a 0.45 mm membrane, and the
concentration of the various metals was determined by atomic
absorption spectrometry (AAS, TAS-990, China). Organic carbon
was measured using a TOC-VCPH Total Organic Carbon Analyzer
(Shimadzu, Japan).

2.4. Effluent treatment

An effluent sample was collected from washing experiment for
treatment to remove Cd. A batch experiment (in duplicate at room
temperature) was conducted to determine the effectiveness of
calcium hydroxide for treating washing effluents. Briefly, 10 mL of
effluent with a pH of 7.13 and a Cd concentration of 0.32 mg/L was
placed in 15 mL polyethylene tubes, and 0.05, 0.1, 0.2, 0.3, 0.4 g
Ca(OH)2 was added. After shaking at 120 rpm for 2 h on an oscil-
lating shaker, the tubes were centrifuged at 3000 rpm for 15 min.
The supernatants were filtered through a 0.45 mm membrane, and
the concentration of Cd in the filtrate was determined by AAS (TAS-
990, China).

2.5. Calculation and statistical analysis

Cd adsorption by humic substances was estimated from the
difference in Cd concentration before and after washing the soil
with the washing agent. Software OriginPro 8.0 (OriginLab. USA)
was used for data analysis.

3. Result and discussion

3.1. Critical micelle concentration and total acidity of humic
substances and fulvic acid

Critical micelle concentration (CMC) of a surfactant is the
threshold concentration at which micelles begin to form. Its
magnitude has a determining influence on the suitability of a given
surfactant for use as a washing agent in that the smaller the CMC
the better the washing efficiency (Mulligan et al., 2001; Mao et al.,
2015). Fig. 1 shows that CMC of the leonardite-derived humic
substances (1890 mg C/L at the corresponding surface tension of
54.6 mN/m) is lower than that of fulvic acid (3150 mg C/L at
47.62 mN/m). The humic substances would therefore be a better
washing agent than the fulvic acid from Macklin. By comparison,
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Fig. 1. Determination of the critical micelle concentration (CMC) by p
Kulikowska et al. (2015b) reported a CMC of 1101 mg C/L at pH 7 for
humic substances from compost, increasing to 1215 mg C/L at pH
13.

In having a high concentration of carboxyl groups (6.70 mol(þ)/
kg C) and phenolic hydroxyl groups (5.44 mol(þ)/kg C), the humic
substances from leonardite would have a large propensity for
adsorption of Cd and other metals by forming stable inner-sphere
complexes with such groups (Tan, 2014). In order to desorb Cd
from clay surfaces, the affinity of a washing agent for the metal
contaminant should exceed that of soil clays.

3.2. Humic substances or fulvic acid concentration and Cd removal
efficiency

As expected, the Cd removal efficiency of humic substances and
fulvic acid increased with the concentration of the washing agent
(Fig. 2). By forming complexes with humic substances (Yuan and
Theng, 2011), soil clays would reduce the efficiency of washing
agents in removing Cd from soil. For this reason, concentration
higher than the CMC would be required for good washing effect.
Furthermore, the higher the humic substance concentration, the
more carboxyl and phenolic hydroxyl groups would be available for
Cd complexation. For the same carbon concentration, humic sub-
stances could therefore remove more Cd from the contaminated
soils as compared with fulvic acid.

Cd removal efficiency was markedly enhanced as the concen-
tration of washing agent increased (0e4725mg C/L). This effect was
evident with humic substances than fulvic acid, particularly when
the concentration of the washing agent was below the CMC. The Cd
removal efficiency is much higher for Soil 3 than for either Soil 1 or
Soil 2, probably because Soil 3 was lighter in texture (contained less
clay), and had a shorter aging time of spiked Cd. We used a humic
substance concentration of 3150 mg C/L (higher than its CMC) and
adjust the liquid-solid ratio, pH, and washing time to optimize Cd
removal efficiency.

3.3. Effect of liquid-solid ratio on Cd removal efficiency

As expected, Cd removal efficiency increased with liquid-solid
ratio until a plateau was approached (Fig. 3). At a liquid-solid ra-
tio of 20, Cd removal efficiency was 87.2% for Soil 1, and the residual
Cd concentration was below the limit (0.30 mg/kg) set by the
Ministry of Environmental Protection of People’s Republic of
China (2006). For Soil 3, a liquid-solid ratio of 15 was sufficient to
reduce the Cd concentration to below the 0.30 mg/kg limit. For Soil
2, Cd removal efficiency increased rapidly to 80.2% as the liquid-
solid rose from 3 to 20, and then rose slowly to 88.0% at a ratio of
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lotting surface tension against washing agent concentration (C).
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Fig. 2. The effect of washing agent concentrations on Cd removal efficiency. Experimental conditions: solution pH ¼ 6.0, liquid-solid ratio of 5, washing time 12 h.
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30. Thus, it is possible to remediate Cd-contaminated soils to meet
state requirement by a single washing with humic substances.

Although Cd removal efficiency increased with liquid-solid ra-
tio, there was a trade-off between efficiency and treatment cost.
The higher the liquid-solid ratio, the more waste water was pro-
duced. A liquid-solid ratio of 5 was chosen to make practical
operation in field cost-effective, by taking into account of water and
energy consumption, machinery availability, and ease of effluent
treatment.



Table 2
Parameters of kinetics of Cd migration from soils to washing agent humic
substances.

Soil pseudo-first-order pseudo-second-order

q1 (mg/g) k1 (L/h) R1
2 q2 (mg/g) k2 (g/mg h) R2

2

Soil 1 0.55 4.6510 0.995** 0.56 28.4760 0.999**

Soil 2 2.23 3.5035 0.977** 2.32 3.3509 0.993**

Soil 3 1.63 5.7007 0.995** 1.66 13.5297 0.999**

**Significant at P ¼ 0.01 level.
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3.4. Effect of pH on Cd removal efficiency

Fig. 4 shows that Cd removal efficiency was slightly greater at
near neutral pH than at either the acidic or alkaline side of
neutrality. This observation was in line with the effect of pH on the
mobility of Cd and other heavy metals in soil (Sun et al., 2013, 2016;
Cui et al., 2016). At pH 3, Cd removal efficiency was low, possibly
because of reduced solubility of humic substances, and their partial
precipitation onto soil (clay) particles. At low pH, the carboxylic
groups of humic substances would also be less dissociated, while
the humic substances molecules become more compact (Lamar
et al., 2014; Kulikowska et al., 2015a). As a result, electrostatic
interaction between humic substances and soil particles would
increase as does humic substance precipitation/adsorption onto
soil particles as Wang and Mulligan (2009) had observed for
arsenic. Adsorption of humic substances onto soils is a common
phenomenon (Simmler et al., 2013; Kulikowska et al., 2015a). At
pH > 7, Cd removal efficiency decreased as Cd tends to form hy-
droxides and precipitate, making it more resistant to washing with
humic substances. We have therefore chosen pH 6 as an acceptable
operational condition.
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3.5. Kinetics of Cd removal by humic substances

Fig. 5 shows that the amount of Cd removed from soils quickly
increased with washing time before a plateau was reached at about
2 h. Thus, 2 h was chosen as a convenient soil washing time.

Data from the kinetic experiments were fitted into a pseudo-
first- and pseudo-second-order model to describe the process of
Cd desorption from soil and Cd adsorption (complexation) to humic
substances.

Pseudo-first-order equation:

qt ¼ q1ð1� eð�k1tÞÞ (1)

Pseudo-second-order equation:

qt ¼
q22k2t

1þ q2k2t
(2)

where q1 and q2 are the amount of Cd adsorbed (mg/g) at equi-
librium, qt is the amount of Cd adsorbed at time t (mg/g), k1 (1/h)
and k2 (g/(mg�h)) are the respective equilibrium rate constants.

In general, the pseudo-first-order model describes the initial
kinetics process, whereas the pseudo-second-order model applies
to the whole process of adsorption/desorption. The R2 values in
Table 2 indicate that Cd adsorption (complexation) to humic
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Fig. 5. Kinetics of Cd desorption from soils. (a)Pseudo-first-order equation (b) Pseudo-seco
substance concentration: 3150 mg C/L.
substances (or Cd desorption from soil) was better described by the
pseudo-second-order model, indicative of a chemisorption process
(Ho and McKay, 1999).
3.6. Effluent treatment

As shown in Fig. 6, the wastewater from soil washing can be
effectively treated with Ca(OH)2 to reduce Cd concentration to
below the waste water discharge limit in China (0.1 mg/L). As the
Ca(OH)2 dosage increased, effluent pH sharply increased from 7.13
to a plateau value of about 12.5. At the same time, there was a steep
fall in Cd concentration from 0.32 to about 0.03 mg/L.
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nd-order equation. Washing conditions: solution pH: 6.0, liquid-solid ratio of 5, humic
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Although Ca(OH)2 is only sparingly soluble in water (solubility
product Ksp of 5.02 � 10�6), the soluble component is fully ionized:
Ca(OH)2 # Ca2þ þ 2OH�, leading to a high pH value. Thus, Ca(OH)2
played three roles in effluent treatment. First, its high pH made
humic substances more effective in adsorbing Cd2þ and reduced
free Cd2þ in effluent. Second, Ca2þ effectively flocculated almost all
humic substances and their adsorbed Cd by forming a Cd-HS-Ca
complex. Third, hydroxyl ions from Ca(OH)2 can combine with Cd
to form a Cd(OH)2 precipitate (Baltpurvins et al., 1997). The treat-
ment of waste water effluent with inexpensive Ca(OH)2 is an in-
tegral part of the humic substances-based washing technology for
soil remediation.

3.7. Potential application of humic substances in soil remediation

Yuan (2008) and Makino et al. (2006) have proposed the
following guidelines for assessing the suitability of washing agents
for soil remediation: (1), these agents should be simple, effective
and reliable allowing the contaminants in waste water to be
recovered; (2), washing agents must be inexpensive; and (3), they
must not be toxic to microbes, leach to groundwater, detrimental to
soil structure and fertility, and harmful to plant growth.

Leonardite-derived humic substances apparently meet all of the
above requirements (Senesi et al., 1991; Halim et al., 2003; Yuan
and Theng, 2011). The humic substances in question contain only
trace amount of heavymetals (Cd 0.16, Pb 9.59, Cu 12.49, Cr 8.73, As
6.41 Ni 13.93, Zn 37.56 mg/kg), far below the allowable metal
concentration limit for farmland (The Ministry of Environmental
Protection of People’s Republic of China, 2006), Based on the
trade-off between Cd removal efficiency and operational cost (e.g.,
time, water availability, and humic substances consumption),
proper washing conditions can be determined to suit local soil
properties, contamination levels, and remediation requirements.
For the three contaminated soils used in this study, a combination
of pH 6.0, a washing time of 6 h, liquid-solid ratio of 5, and a humic
substances dosage of 3150 mg C/L could remove removed 42e75%
of Cd in a single washing. Further, the Cd in the wastewater could
readily be removed by adding a small dose of cheap Ca(OH)2 to
meet effluent discharge requirements. Here we suggest field veri-
fications of the washing method in two occasions. The first is to
remediate Cd-contaminated paddy field where water is abundant
and mixing soil and water is a normal practice in conjunction with
fertilization and the transplantation of seedlings. Humic substances
can be added to soil during the soil-water mixing operation.
Removal of Cd fromwater can be done at drainage exit. The second
is to remediate Cd-contaminated urban land for residential devel-
opment, where the cost of remediation can be well justified, and
the washing and effluent treatment can be done on site before the
development.

4. Conclusions

Leonardite-derived humic substances have a low CMC and a
great capacity to adsorb Cd. When used as a washing agent for Cd-
contaminated soils, washing conditions may be tailored to suit soil
properties and meet local remediation requirements. Using a hu-
mic substance concentration of 3150 mg C/L, a pH of 6.0, a washing
time of 2 h, and a liquid-solid ratio of 5, a single washing could
reduce the Cd concentration of three Cd-contaminated soils by 41.6,
36.8 and 74.9%. Further, the Cd concentration in the effluent (waste
water) can be easily lowered to meet discharge requirements by
treatment with a small dose of Ca(OH)2. Being superior to many
washing agents in terms of washing effectiveness, safety, benefits
to soil, and low cost, leonardite-derived humic substances have the
potential to become the washing agent of choice for the
remediation of soils contaminated with Cd and other heavy metals.
Paddy field with plenty of water or urban land with a high value
could be chosen for a trial in the future.
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